

Soft QCD / Minimum Bias / Diffraction Results from ALICE

P. Antonioli (INFN/Bologna) on behalf of the ALICE Collaboration

Hadron Collider Physics Symposium

Outline

- ALICE interest in & capabilities for pp physics
- Diffraction and total cross section
- Inclusive production & identified particle production
 - Charged particle multiplicity, dN_{ch}/dη, dN_{ch}/dp_T
 - Yields and p_T spectra: $\pi/K/p$, hyperons
- Correlations and fluctuations
 - HBT correlations, mean p_T fluctuations

ALICE presentations: Heavy Ion (I) - high p_T @ ALICE: M. van Leeuwen Nov 14 Heavy Quark Production @ ALICE: C. Suire Nov 17 Heavy Ion (II) - soft p_T : ALICE/ATLAS/CMS P. Kujier Nov 18

ALICE detector

Alice numbers: 1300 members 116 institutes 33 countries

Highligths for this talk:

moderate B (0.5 T), thin material (7% X₀ at perpendicular incidence in ITS)
 → low p_T reach (< 100 MeV/c)

• extended PID capabilities in central barrel: π, K, p and Hadron Collider Physics Symposium

Data samples and triggers

System	Energy (TeV)	Trigger	Analyzed events	∫Ldt
рр	7	MB MUON	300M 130M	5 nb-1 16 nb-1
рр	2.76	MB MUON	65M ≈ 9M	1.1 nb-1 20 nb-1

Triggers: MB: based on VZERO (A and C) and SPD SINGLE MUON: forward muon in coincidence with MB

Centrality selection for PbPb: Based on amplitude on V0

V0 detector (at z=3.3 m (V0A) and -0.9 m (V0C) from I.P.) Two arrays of 32 scintillator counters Used for reference cross-section (VdM scans) and diffraction studies Hadron Collider Physics Symposium P. Antonioli / INFN Bologna

Alice central barrel in 2011 and some PID highlights

pp physics in ALICE

Total cross section and diffraction

Production mechanism

- inclusive production
- identified particle spectra
- multistrange hadrons
- vector mesons ($\pi^0/\eta \rightarrow$ gluon fragm. function)
- proton/anti-proton ratio (baryon transport mech.)

Bose-Einstein correlations and fluctuations

- Heavy Flavour production → see C. Suire talk
- (pp as baseline for HI physics → see M. van Leeuwen/P. Kujier talks)

In this talk

Total cross section and diffraction

measurement of the inelastic p-p cross-section
 extraction of Single and Double Diffraction cross-sections

Note: ALICE has 1-arm and 2-arm triggers allowing to extract SD and DD cross-sections

Alice detectors used: SPD V0 FMD (silicon sensors at large rapidity)

Total cross section and diffraction

- ✓ measurement of the inelastic p-p cross-section
- ✓ extraction of Single and Double Diffraction cross-sections

Paris, 15 November 2011

Hadron Collider Physics Symposium

Gotsman et al., arXiv:1010.5323, EPJ. C74, 1553 (2011) Kaidalov et al., arXiv:0909.5156, EPJ. C67, 397 (2010) Ostapchenko, arXiv:1010.1869, PR D83 114018 (2011) Khoze et al., EPJ. C60 249 (2009), C71 1617 (2011)

From TOTEM Coll., CERN-PH-EP-2011-158 (Sep. 2011)

ALICE: arXiv hep-ex/1109.4510 ATLAS: arXiv hep-ex/1104.0326 CMS: CMS-PAS-FWD-11-001 TOTEM: CERN-PH-EP-2011-158

Very good agreement between LHC experiments ALICE final result is in agreement with our preliminary result at 7 TeV within less than 1% (and reduction of error due to lumi contribution)

 $\sigma_{\text{inel}} (\sqrt{s=7} \text{ TeV}) = 73.2 \pm 1.1 \text{ (model)} \pm 2.8 \text{ (lumi)}$

Paris, 15 November 2011

Hadron Collider Physics Symposium

Single and double diffractive

Study of pseudo-rapidity distribution of tracks made by event vertex and a hit either in SPD, VZERO or FMD cells

Within accuracy, ratio is constant

√s (TeV)	σ _{SD} /σ _{inel}	$\sigma_{\rm DD}/\sigma_{\rm inel}$	
0.9	0.202 ± 0.034	0.113 ± 0.029	
2.76	0.187 ± 0.054	0.125 ± 0.052	
7	0.201 ± 0.039	0.122 ± 0.036	

Inclusive production

Charged multiplicity at 7 TeV: Eur. Phys. Journal C 68 (2010), 345 Charged multiplicity (900 GeV & 2.36 TeV): Eur. Phys. Journal C 68 (2010), 89

(Already published results summarized in backup slides)

Modified Hagerdon function used for fit p_{T}^{-n} power law observed at high p_{T} (above 3 GeV)

$$\left(1 + \frac{p_{\rm t}}{p_0}\right)^{-n} \longrightarrow \begin{cases} \exp\left(-\frac{n}{p_0}p_{\rm t}\right) & \text{ for } p_{\rm t} \to 0, \\ \left(\frac{p_0}{p_{\rm t}}\right)^n & \text{ for } p_{\rm t} \to \infty. \end{cases}$$

added spectra from 'low' energy run in 2011 pp @ $\sqrt{s} = 2.76 \text{ TeV}$

Identified particle spectra

use of ITS-TPC-TOF, individually and in combination in different \textbf{p}_{T} ranges

Details: B. Guerzoni at SQM 2011

Paris, 15 November 2011

Hadron Collider Physics Symposium

P_. ranges

(GeV/c)

π

Κ

D

ITSsa

0.1 - 0.5

0.2 - 0.5

0.3-0.55

P. Antonioli / INFN Bologna

TPCTOF

0.2-1.4

0.25-1.4

0.45 - 1.7

TOF

0.5 - 1.6

0.5 - 1.6

0.9 - 2.5

ITSTPC

0.2-0.55

0.25 - 0.5

0.4-0.85

14

Spectra / Particle ratios and MC

comparison with Perugia 2011 shows nice agreement with kaons and overestimation for pions
particle ratios plots generally challenge MC

Spectra / Particle ratios and MC

comparison with Perugia 2011 shows nice agreement with kaons and overestimation for pions
particle ratios plots generally challenge MC

P. Antonioli / INFN Bologna 16

Particle ratios (2) and <p_T>

No energy dependence on K/ π and p/ π ratios

modest increase of $<p_T>$ (consistent with linear expectation from m_T scaling)

$$E\frac{d\sigma}{dp_T} = A\frac{e^{-m_T/T}}{m_T^{\lambda}}$$

ysics Symposium

Identified Spectra in heavy ions collisions

INFN

Again measurement with ITS-TPC-TOF Blast wave fits to extract yields and <p_>

ALI-PREL-2704

Generally better agreement with ϕ , Perugia 2011 tends to underestimates yields in these channels

 K^{*0} (892) → Kp φ (1020) → $K^+K^ \Sigma^{*-}$ (1385) → $\Lambda^0\pi^-$ → $p\pi^-$

Correlations

Two particles (identical pion pairs) to study Bose-Einstein correlations

Hanbury-Brown (*) and Twiss radii extracted to study spatial scale of the emitting source ("femtoscopy")

Femtoscopy in pp

- precise data of 'elementary' systems
- now comparable multiplicities in pp and PbPb \rightarrow direct comparison
- study of the emitting source size in pp

Two-pion Bose-Einstein correlations in pp collisions at $\sqrt{s=900 \text{ GeV}}$ Phys. Rev. D82 (2010) 052001

Femtoscopy in PbPb

-allow to study spatial distribution of decouping hadrons -track collective motion of matter from radius dependence on p_T

Two-pion Bose-Einstein correlations in central PbPb collisions at $\sqrt{s_{NN}}$ =2.76 TeV Phys. Lett. B, 704 (2011) 442

side

Narrabri Obs, Australia

(*) interferometry tecnique first time used in 1956 by Hanbury-Brown in Australia to measure stars radius

Paris, 15 November 2011

Hadron Collider Physics Symposium

Alice, Switzerland

radii vs k_T

- \cdot R_{out} and R_{side} decrease with k_{T} at large multiplicities
- R_{long} falls with k_T at all multiplicities

in pp we observe dependence on $k_{\rm T}$ (in heavy ions collisions radii decrease with $k_{\rm T}$ is a signature of collective motion)

Paris, 15 November 2011

Hadron Collider Phys

•linear scale expected with mult^{1/3}, but different slopes and offset for pp and AA

 possible direct comparison between elementary and 'compound' system

•in pp size of emitting source \approx 1 fm

 comparison with trend inferred by other (lower energies) HI data ok for R_{long} not for R_{out}

 qualitative agreement with hydro models

Note: correlations with kaons (not shown) limited to 1D radii but help to extend k_T range (up to 1.8 GeV/c) Details: A. Kiesel at QM2011

Paris, 15 November 2011

Hadron Collider Physics Symposium

--- fits to AA @≤200 AGeV

radii vs dN_{ch}/dn

•linear scale expected with mult^{1/3}, but different slopes and offset for pp and AA

 possible direct comparison between elementary and 'compound' system

in pp size of emitting source ≈ 1 fm

 \bullet comparison with trend inferred by other (lower energies) HI data ok for R_{long} not for R_{out}

 qualitative agreement with hydro models

Note: correlations with kaons (not shown) limited to 1D radii but help to extend k_T range (up to 0.8 GeV/c)

Fluctuations: <p_T>

- fluctuations in pp are expected to be dominated by known physics as resonance decays, HBT and mini-jets
- we study fluctuations on $<p_T>$ event-by-event over all tracks pairs via particle correlator C_m

Relative fluctuations seem universal at LHC (except at small multiplicity). Perugia-0 reproduces well data but not at small multiplicity.

Paris, 15 November 2011

Hadron Collider Physics Symposium

Conclusions

Cross sections: σ_{INEL} , σ_{SD} and σ_{DD} measured Very good agreement with other LHC experiments

Particle production: charged particles up to 100 GeV/c; π , K, p, π^0 , η , hyperons, ω , ϕ , resonances up to 5-10 GeV/c

Extensive **comparison with pQCD** and MC models, discrepancy with MC data for hyperons at intermediate p_T

Correlations and fluctuations studies:

Studied behavior of pp events via femtoscopy

pp baseline for Pb-Pb studies ($\sqrt{s_{NN}}=2.76$ TeV) successfully established, here discussed application for HBT and identified spectra analysis

Rich **proton-proton physics programme** developed by ALICE (measurements shown at 0.9, 2.36, 2.76 and 7 TeV c.m. energies) exploiting its detector capabilities, particularly relevant for soft QCD studies.

Backup / published results

Inclusive production (1): dN/dη

Relative increase of the pseudorapidity charge density

power law dependence fits well, but large discrepancy with MC, increasing with energy

Charged multiplicity at 7 TeV: Eur. Phys. Journal C 68 (2010), 345 Charged multiplicity (900 GeV & 2.36 TeV): Eur. Phys. Journal C 68 (2010), 89

Paris, 15 November 2011

INFN

Hadron Collider Physics Symposium

Inclusive production (2): multiplicity

- Multiplicity predictions from MC pre-LHC lower than measured, with ATLAS-CSC exception
- Negative Binomial fit provides good description but not for large tail (especially for 7 TeV data)
- Very good agreement with CMS (not shown)

Paris, 15 November 2011

Hadron Collider Physics Symposium

for $p_{\rm t} \rightarrow 0$,

for $p_t \to \infty$.

Inclusive production (3): p_T spectra

INFN

 $\left(1+\frac{p_{\rm t}}{p_0}\right)^{-n} \longrightarrow \begin{cases} \exp\left(-\frac{n}{p_0}p_{\rm t}\right) \\ \left(\frac{p_0}{p_0}\right)^n \end{cases}$

Inclusive production (4): <p_T> vs n_{ch}

Perugia-0 agrees above 0.5 GeV but not above 0.15 GeV

SD/DD analysis: 1-arm and 2-arm triggers

Pseudorapidity distribution of "tracks" (SPD/FMD/V0) event by event:

✓ identify pseudorapidity gap with the widest width

✓ compute pseudorapidity distances $(d_1 \text{ and } d_2)$ of each edge of the measured η distribution from the corresponding nearest edge of the acceptance.

Classification of events

✓ if maximum gap width is greater than both d_1 and d_2 → 2-arm trigger event.

✓ if the edge is at η <1 or η >-1 and d_1 or d_2 > gap → 1-arm trigger event.

