

Rare Decays in LHCb

Diego Martinez Santos (CERN)

(on behalf of the LHCb Collaboration)

Introduction

- LHCb results on rare B decays
- Why do we search for them?
 - $B_d \rightarrow K^* \mu \mu$: Branching ratio, angular observables (LHCb-CONF-2011-038)
 - Branching ratios of $B_{d,s} \rightarrow \mu\mu$ (update with respect to EPS, with 370 (2011)+ 37(2010) pb⁻¹), to be submitted to PLB
 - Branching ratio of $B_s \rightarrow \varphi \gamma$ (LHCb-CONF-2011-055)

Indirect Approach

• B,D, K decays can access NP through new virtual particles entering in the loop \rightarrow indirect search (for example SUSY particles affecting $B_{d,s} \rightarrow \mu\mu$)

• Indirect approaches can access higher energy scales and see NP effects earlier:

•CPV in Kaons \rightarrow 3rd quark family. Neutral Currents \rightarrow Z⁰...

•New heavy particles may reveal themselves in flavour physics

(Or the absence of non SM effects in flavor physics can constrain NP)

Angular analysis of $B_d \rightarrow K^* \mu \mu$

LHCb-CONF-2011-038

LHCb-CONF-2011-038

• $B_d \rightarrow K^* \mu \mu$: decay described by 3 angles: (θ_L , θ_K and ϕ) and the dimuon invariant mass squared q^2 .

Sensitive to NP:

 $B_d \rightarrow K^* \mu \mu$

- right-handed currents.
- new scalar / pseudo-scalar operators.

by probing helicity structure of the decay through angular observables.

W.Altmannshofer et al. [JHEP 0901:019 (2009)]

LHCb-CONF-2011-038

- Select signal events mainly via a Boosted Decision Tree (BDT) + special vetoes for specific backgrounds
- Correct for biases (reconstruction/selection/trigger) using simulation
 - Correction applied event by event (model independent)
 - Validated on data via control channels (mainly $B_d \rightarrow J/\psi(\mu\mu) K^*(K^+\pi^-)$)
- Fit for observables
- \bullet Focus on theoretically clean observables: $F_L,\,A_{FB}$, and yield in bins of q^2 (dimuon invariant mass squared)

Selection

BDT

LHCb-CONF-2011-038

90 Events / (10 MeV/c² Preliminary • Remove charmonium resonaces: Full q² range •2946 < $m_{\mu\mu}$ < 3176 MeV (J/ ψ veto) 70•3586 < m_{uu} < 3776 MeV ($\psi(2S)$ B_d→K*μμ 60F veto) 50 40 • Treat peaking bkgs with a specific set 309 pb⁻¹ 30 of criteria (reduced to ~3% of the signal) •B_d \rightarrow J/ $\psi(\mu\mu)$ K*(K⁺ π ⁻) swapping μ - π 5100 5150 5200 5250 5300 5350 5400 5450 5500 5550 5600 Combinatorial bkg reduced with a $m_{\!K\pi\mu\mu}$ (MeV/c^2)

> Mass lineshape is exponential for background, double gaussian for signal

Results: differential BR

LHCb-CONF-2011-038

Theory prediction C.Bobeth et al. 1006.5013 hep-ph, U.Egede et al. 0807.2589

Angular observables

LHCb-CONF-2011-038

- Unbinned maximum likelihood fit in dimuon mass bins with event by event weights
- Simultaneous fit in a θ_L , θ_K (and invariant mass) to extract A_{FB} and F_L using the following 2 expressions:

$$\frac{1}{\Gamma} \frac{\mathrm{d}^2 \Gamma}{\mathrm{d} \cos \theta_\ell \, \mathrm{d} q^2} = \frac{3}{4} F_L (1 - \cos^2 \theta_\ell) + \frac{3}{8} (1 - F_L) (1 + \cos^2 \theta_\ell) + A_{FB} \cos \theta_\ell$$
$$\frac{1}{\Gamma} \frac{\mathrm{d}^2 \Gamma}{\mathrm{d} \cos \theta_K \, \mathrm{d} q^2} = \frac{3}{2} F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K)$$

• The angular distribution of the background is modeled using 2nd order polynomials

Results: A_{FB}, F_L

LHCb-CONF-2011-038

Theory prediction C.Bobeth et al. 1006.5013 hep-ph , U.Egede et al. 0807.2589

Search for $B_{s,d} \rightarrow \mu \mu$

(to be submitted to PLB)

WWW

S

b

q

s

SM and New Physics

This decay is very suppressed in SM :

 $\begin{array}{ll} BR(B_{s}\rightarrow\mu\mu) & (3.2\pm0.2)x10^{-9} \\ BR(B_{d}\rightarrow\mu\mu) & (1.0\pm0.1) \ x10^{-10} \end{array}$

But in NP models it can be different from SM by orders of magnitude

 $\rightarrow \underline{Whatever \ the \ actual \ value} \\ \underline{is, \ it \ will \ have \ an \ impact \ on} \\ \underline{NP \ searches}$

SM and New Physics

Scenarío	would point to
$\mathcal{BR}(\mathcal{B}_s \to \mu\mu) >> S\mathcal{M}$	Bíg enhancement from NP in scalar sector, SUSY hígh tanβ
$\mathcal{BR}(\mathcal{B}_s \to \mu\mu) \neq S\mathcal{M}$	SUSY (C_S, C_P) , ED's, LHT, TC2 (C_{10})
$\mathcal{BR}(\mathcal{B}_s \to \mu\mu) \sim S\mathcal{M}$	Anything (→ rule out regions of parameter space that predict sizable departures from SM. Obviously)
$\mathcal{BR}(\mathcal{B}_s \to \mu\mu) \ll S\mathcal{M}$	NP in scalar sector, but full MSSM ruled out. NMSSM (Higgs singlet) good candidate
$\mathcal{BR}(\mathcal{B}_{s} \to \mu\mu) / \mathcal{BR}(\mathcal{B}_{d} \to \mu\mu) \neq S\mathcal{M}$	CMFV ruled out. New FCNC sources fully independent of CKM matrix (RPV SUSY, ED's etc)

Analysis strategy

(to be submitted to PLB)

• Selection cuts in order to reduce the amount of data to analyze. LHCb trigger selects > 90% of the signal that is interesting for the offline analysis.

• Classification of $B_{s,d} \rightarrow \mu \mu$ events in bins of a 2D space

• Invariant mass of the µµ pair

 Boosted Decision Tree combining geometrical and kinematical information about the event.

•Flat distributed for signal, background peaks at 0

• Control channels to get signal and background expectations w/o relying on simulation

• Compare expectations with observed distribution. Results combined using CL_s method

Boosted Decision Tree

(to be submitted to PLB)

- $\begin{array}{c} \text{filled} \\ 10^{-1} \\ 10^{-1} \\ 10^{-2} \\ 10^{-2} \\ 10^{-3} \\ 10^{-3} \\ 10^{-4} \\ 0 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 10^{-4} \\ 0 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 10^{-4} \\ 0 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 10^{-4} \\ 0 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 10^{-4} \\ 0 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 10^{-4} \\ 0 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 10^{-4} \\ 0 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 10^{-4} \\ 0 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 10^{-4} \\ 0 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 10^{-4} \\ 0 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 10^{-4} \\ 0 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 10^{-4} \\ 0 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 10^{-4} \\ 0 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 10^{-4} \\ 0 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 0.9 \\ 0.8 \\ 0.9 \\ 0.8 \\ 0.9 \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 0.8 \\ 0.8 \\ 0.9 \\ 0.8 \\$
- S-B separation relies strongly on this variable
- Trained using MC samples of $B_s \rightarrow \mu \mu$ signal and $bb \rightarrow \mu \mu$ background.
- Distributions taken from data to not rely on the simulation

- Distribution of signal is obtained by looking at $B \rightarrow h^+h^-$ in real data
- Background distribution is obtained from data by interpolating from mass sidebands in BDT bins

Invariant Mass

(to be submitted to PLB)

• Signal distribution depends on the actual mass resolution of LHCb in the B mass region (resolution depends on mass, almost linearly)

• Measured in data by **interpolating from di-muon resonances** (J/ ψ (m<mB), Y (m>mB)...) **crosscheck** looking at **B** \rightarrow **h**⁺**h**⁻ (B_{d,s} \rightarrow K⁺ π ⁻, B_d \rightarrow π ⁺ π ⁻, B_s \rightarrow K⁺K⁻)

• μμ background yield in mass bins is interpolated from mass sidebands

 $\sigma = 24.6 \pm 0.2 \pm 1.0 \text{ MeV}/c^2$

Normalization

Ratio of probabilities of b quark to hadronize into the different mesons. for $B_s \rightarrow \mu\mu$ normalization to Bd or B+ mode: 3.75±0.29 [arXiv:1106.4435 [hep-ex]]

• Three channels are used, each one with different (dis)advantages:

Results

(to be submitted to PLB)

B _s →μμ	at 90% CL	at 95% CL
Expected BR limit (bkg. + SM hypothesis)	1.1 × 10 ⁻⁸	1.4×10^{-8}
Observed BR limit	1.3×10^{-8}	1.6×10^{-8}

B ⁰ →µµ	at 90% CL	at 95% CL
Expected BR limit (bkg. only hypothesis)	2.5×10^{-9}	3.2 × 10 ⁻⁹
Observed BR limit	3.0×10^{-9}	3.6×10^{-9}

Combining 2010 (PLB 699 (2011) 330) +2011 analysis: ~400 pb⁻¹ in total:

	at 90% CL	at 95% CL
Observed BR(B^0 $\rightarrow \mu \mu$) limit	2.6 x 10 ⁻⁹	3.2 x 10 ⁻⁹
Observed BR($B_s \to \mu \mu$) limit	1.2 x 10 ⁻⁸	1.4 x 10 ⁻⁸

Extrapolated sensitivity

 $B_s \rightarrow \mu \mu$ will continue to constrain NP scenarios. A 3 σ evidence is possible between winter conferences and end of 7 TeV run

Measurement of the BR($B_s \rightarrow \phi \gamma$)

LHCb-CONF-2011-055

$B_s \rightarrow \varphi \gamma$

LHCb-CONF-2011-055

Measurement of the ratio BR(B_d→K^{*0}γ) / BR(B_s→φγ)
Requires detailed study of specific backgrounds

Conclusions

• $B_d \rightarrow K^* \mu \mu$ results from LHCb show very good agreement with SM prediction. But still arriving to the interesting level of precision.

• BR($B_s \rightarrow \mu\mu$) < 14 x10⁻⁹ @ 95% CL, still room for further constraints. Signal evidence can be there between Moriond and end of 7 TeV run.

• Preliminary BR($B_s \rightarrow \varphi \gamma$) measured within 2 σ of SM prediction.

Backup

Dimuon from diphoton production, in combination with other primary vertex. Features:

- B mass: combinatorial, can reach large masses
- BDT response ~flat, as the fake flight distance can be large
- $B(p_T)$ is soft: killed with cut $B(p_T) > 0.5$ GeV/c

Peaking background $B \rightarrow hh \rightarrow \mu\mu$ (both hadrons misidentified as muons)

- Measure $K{\rightarrow}\mu$ and $\pi{\rightarrow}\mu$ misID using calibration sample $D^0{\rightarrow}K\pi$
- Convolute misID with the hadron p, p_T phase space of B \rightarrow hh', obtained from MC
- Total number expected in both mass windows:

B ^o	B _s
5.0±1.0	1.0±0.4

Example: $\pi \rightarrow \mu$ misID rate vs p,p_T

Extrapolated sensitivity

LHCb can provide <u>VERY</u> interesting results in one year from now!

LHCb

- Low angle spectrometer
- Very efficient trigger
- Good particle identification performance
- Precise reconstruction:
 - Separation production vertex decay vertex $\sigma(IP)$ ~ 25 μm
 - Invariant mass $\Delta p/p \sim 0.35-0.55\%$
 - $B_{s,d} \rightarrow \mu \mu$ signature:
 - Hits in muon detector
 - μμ pair has B invariant mass
 geometrical & kinematical signature: pt, detachment of decay vertex

