

Search for supersymmetry in hadronic final states with M_{T2}

B. Casal, F. Moortgat, L. Pape, P. Nef, L. Sala, D. Treille, <u>H. Weber</u> (ETH Zürich) on behalf of the CMS collaboration

We present the results of a search for physics beyond the Standard Model (BSM) using data of 1.1 fb⁻¹ integrated luminosity collected by the CMS experiment at the LHC. Fully hadronic final states were selected based on the "stransverse" mass variable M_{T2} and interpreted in various models of supersymmetry (SUSY). Two complementary analyses were performed targeting different areas of the SUSY phase space. All backgrounds were estimated using both simulation and data-driven methods. As no excess of events over the expected background was observed exclusion limits were derived.

Definition of M_{T2}

Generalization of transverse mass M_T in case of **two** decay chains with each an unobserved particle [1]

 $M_{T2}(m_c) = \min_{\bar{p}_T^{C(1)} + \bar{p}_T^{C(2)} = \bar{p}_T^{miss}} \left[\max\left(m_T^{(1)}, m_T^{(2)}\right) \right]$

Background Estimation Strategy

Results

	SM-MC	Data	Final background estimate
High M_{T2}	10.6	12	12.6 ± 1.3 (stat) ± 3.5 (syst)
Low M _{T2}	14.3	19	10.6 ± 1.9 (stat) ± 4.8 (syst)
	Step 10 ⁵ 10 ⁴ 10 ⁴	r₂ Analysis	CMS Preliminary, $\sqrt{s} = 7$ TeV, L = 1.1 fb ⁻¹ QCD W+jets Z+jets Top LM6 - data

 $\left[\prod_{T} \prod$

Advantages of M_{T2}

Assuming zero masses and no initial state radiation (ISR):

 $M_{T2}^2 = 2p_T^{(1)}p_T^{(2)}(1 + \cos\phi_{1,2})$

EWK / Top control regions: Low M_{T2} : 100 GeV < M_{T2} < 150 GeV High M_{T2} : 200 GeV < M_{T2} < 400 GeV

QCD estimation

Factorization method

Exclusions

Model independent limit

	Limit on $\sigma \times BR$ (pb)		
	observed	expected	
High M _{T2}	0.010	0.011	
Low M _{T2}	0.020	0.014	

Exclusion in cMSSM plane

CMS Preliminary, $\sqrt{s} = 7$ TeV, L = 1.1 fb⁻¹

 $M_{T2} \approx MET$ for symmetric systems, i.e. for $p_T^{(1)} = p_T^{(2)}$

 $M_{T2} = 0$ GeV for back-to-back systems

→ M_{T2} is robust against jet energy mismeasurements:

 $M_{T2} \approx 0$ GeV for mismeasurement along one of the two visible systems

 M_{T2} < MET for asymmetric mismeasurement

Analysis Strategy

High M _{T2}	Low M _{T2}
# jets ≥ 3	# jets ≥ 4
H _T > 600 GeV	# b-tags ≥ 1
M _{T2} > 400 GeV	H _T $\ge 650 \text{ GeV}$

W/Top estimation

Leptons lost due to acceptance, isolation or identification

Exclusion in Simplified Models topologies Provide a start of the start of

Summary

- Search for BSM physics in hadronic final states performed:
 - **1.1 fb⁻¹** at $\sqrt{s} = 7$ TeV with CMS
- Two analysis strategies to probe a large phase space
- Tail of the M_{T2} distributions sensi-

Event Selection

- jets with $p_T > 20$ GeV, $|\eta| < 2.4$
- Lepton (e,µ) veto
- MET tail cleaning cuts (e.g. noise)
- minΔφ(MET, any jet) > 0.3
- |MHT MET| < 70 GeV
- H_T triggers for selecting data

 ε_l : probability of W_{lv} to be reconstructed

Hadronic tau decays

Well modelled in Monte Carlo \rightarrow Verified W_{Iv} kinematics with muons tive to possible SUSY signal No excess observed, limits set.

References: [1] C.G. Lester, J.D. Summers, Phys.Lett. B463 (1999) 99 [hep-ph/9906349]; [2]: A. Barr, C. Gwenlan, arXiv:0907.2713 [hep-ph/09072713] Bibliography: CMS PAS SUS-11-005