Search for CP violation in twobody charm decays at LHCb

Mat Charles (Oxford) on behalf of the LHCb collaboration

Documentation to appear in LHCb-CONF-2011-061

- Introduction to LHCb
- CP violation in charm
- Time-integrated search for CPV in D⁰ \rightarrow K⁻K⁺ vs $\pi^-\pi^+$
- Conclusions

Disclaimer: All results are preliminary

LHCb data sample

• Analysis shown today: 580 pb⁻¹, 2011 data only

CP violation

3 types of CP violation: In decay: amplitudes for a process and its conjugate differ In mixing: rate of D⁰ → D⁰ and D⁰ → D⁰ differ In interference between mixing and decay diagrams

- In the SM, indirect CP violation in charm is expected to be very small and universal between CP eigenstates
 - Perhaps $O(10^{-3})$ for CPV parameters => $O(10^{-5})$ for observables like A_{Γ}
- Direct CP violation can be larger in SM, very dependent on final state (therefore we must search wherever we can)
 - Negligible in Cabibbo-favoured modes (SM tree dominates everything)
 - In singly-Cabibbo-suppressed modes: up to $O(10^{-4} 10^{-3})$ plausible
- Both can be enhanced by NP, in principle up to O(%)

Bianco, Fabbri, Benson & Bigi, Riv. Nuovo. Cim 26N7 (2003) Grossman, Kagan & Nir, PRD 75, 036008 (2007) Bigi, arXiv:0907.2950

Bobrowski, Lenz, Riedl & Rorhwild, JHEP 03 009 (2010) Bigi, Blanke, Buras & Recksiegel, JHEP 0907 097 (2009)

CPV in charm not yet seen experimental

Direct

Indirect

Where to look for direct CPV

 $\mathcal{O}(10^{-5} - 10^{-4})$

 $c \rightarrow u q \bar{q}$

- Remember: need (at least) two contributing amplitudes with different strong and weak phases to get CPV.
- Singly-Cabibbo-suppressed modes with gluonic penguin diagrams very promising
 - Several classes of NP can contribute
 - ... but also non-negligible SM contribution

Today: difference between $A_{CP}(D^0 \rightarrow K^+ K^-)$, $A_{CP}(D^0 \rightarrow \pi^+ \pi^-)$

- Expectation from U-spin: $A^{dir}(KK) = -A^{dir}(\pi\pi)...$
- Conclusion could be softened by large U-spin violation in power corrections $[Kagan] \rightarrow f) - \Gamma(D \rightarrow f)$ $\Gamma(D^0 \rightarrow f) + \Gamma(\overline{D}^0 \rightarrow f) = A_{CP,dec}^{\text{opssman, Kagan & Nfr, PRD 75, 036008 (2007)}} = A_{CP,dec}^{\text{opssman, Kagan & Nfr, PRD 75, 036008 (2007)}}$

$D^0 \rightarrow K^+ K^-, \pi^+ \pi^-$ measurements

Year	Experiment	CP Asymmetry in the decay mode D0 to π + π -	$[\Gamma(D0)\text{-}\Gamma(D0bar)]/[\Gamma(D0)\text{+}\Gamma(D0bar)]$
2010	CDF	M.J. Morello (CDF Collab.), Preprint (CHARM 2010).	$+0.0022 \pm 0.0024 \pm 0.0011$
2008	BELLE	M. Staric et al. (BELLE Collab.), Phys. Lett. B 670, 190 2008).	$+0.0043 \pm 0.0052 \pm 0.0012$
2008	BABAR	B. Aubert et al. (BABAR Collab.), Phys. Rev. Lett. 100, 061803 (2008).	$-0.0024 \pm 0.0052 \pm 0.0022$
2002	CLEO	S.E. Csorna et al. (CLEO Collab.), Phys. Rev. D 65, 092001 (2002).	$+0.019 \pm 0.032 \pm 0.008$
2000	FOCUS	J.M. Link et al. (FOCUS Collab.), Phys. Lett. B 491, 232 (2000).	$+0.048 \pm 0.039 \pm 0.025$
1998	E791	E.M. Aitala et al. (E791 Collab.), Phys. Lett. B 421, 405 (1998).	$-0.049 \pm 0.078 \pm 0.030$
	•	COMBOS average	$+0.0020 \pm 0.0022$

Year	Experiment	CP Asymmetry in the decay mode D0 to K+K-	$[\Gamma(D0)\text{-}\Gamma(D0bar)]/[\Gamma(D0)\text{+}\Gamma(D0bar)]$
2011	CDF	A. Di Canto (CDF Collab.), Preprint (BEAUTY 2011).	$-0.0024 \pm 0.0022 \pm 0.0010$
2008	BELLE	M. Staric et al. (BELLE Collab.), Phys. Lett. B 670, 190 (2008).	$-0.0043 \pm 0.0030 \pm 0.0011$
2008	BABAR	B. Aubert et al. (BABAR Collab.), Phys. Rev. Lett. 100, 061803 (2008).	$+0.0000 \pm 0.0034 \pm 0.0013$
2002	CLEO	S.E. Csorna et al. (CLEO Collab.), Phys. Rev. D 65, 092001 (2002).	$+0.000 \pm 0.022 \pm 0.008$
2000	FOCUS	J.M. Link et al. (FOCUS Collab.), Phys. Lett. B 491, 232 (2000).	$-0.001 \pm 0.022 \pm 0.015$
1998	E791	E.M. Aitala et al. (E791 Collab.), Phys. Lett. B 421, 405 (1998).	$-0.010 \pm 0.049 \pm 0.012$
1995	CLEO	J.E. Bartelt et al. (CLEO Collab.), Phys. Rev. D 52, 4860 (1995).	$+0.080 \pm 0.061$
1994	E687	P.L. Frabetti et al. (E687 Collab.), Phys. Rev. D 50, 2953 (1994).	$+0.024 \pm 0.084$
		COMBOS average	-0.0023 ± 0.0017

Dominated by CDF, especially for D⁰ $\rightarrow \pi^+ \pi^-$

 $K^{+}K^{-}$ and $\pi^{+}\pi^{-}$ values consistent with zero but have opposite sign.

Indirect vs direct CP violation

- Both indirect & direct CPV can contribute.
- Indirect CPV is universal => cancels in A(KK)-A($\pi\pi$)...
 - ... IF equal proper time acceptance for both (e.g. BABAR, Belle)
- If not equal, residual contribution: $A^{ind}[<t_{KK}>-<t_{\pi\pi}>]/\tau_0$

Formalism

- ... so when we take $A_{RAW}(f)^* A_{RAW}(f')^*$ the production and soft pion detection asymmetries will cancel. Moreover...
- No detector asymmetry for D⁰ decays to (K⁺ K⁻), ($\pi^+ \pi^-$)

... i.e. all the D^{*}-related production and detection effects cancel. This is why we measure the CP asymmetry difference: very robust against systematics.

Shorthand: $\Delta A_{CP} \equiv A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+)$

Assumptions

- Double-difference robust against systematics.
- In order to break the formalism, you need a detector effect that induces different fake asymmetries for KK and $\pi\pi$.
- Two known mechanisms:
 - Correlation between KK/ $\pi\pi$ efficiency ratio and D^{*+}/D^{*-} asymmetry (from production or soft pion efficiency)
 - \bullet e.g. correlated variation of A_P and A_D with kinematics (p_t,η)
 - Solution: divide data into bins of the variable (such that no correlation within bin) and treat each bin independently.
 - Asymmetric peaking background different between KK, $\pi\pi$
 - $\bullet\, Comes$ from mis-reconstructed $D^{*+} \rightarrow D^0\,\pi^+$
 - This is a small effect at LHCb due to excellent hadron ID: from D⁰ mass sidebands, size of peaking background O(1%) of signal... and background asymmetry O(%) so effect O(10⁻⁴)
- First-order expansion assumes raw asymmetry not large.
 - ... which is true: O(%).

Selection

- Kinematic and geometrical selection cuts, including:
 - Track fit quality for all three tracks
 - D^0 and D^{*+} vertex fit quality
 - Transverse momentum of $D^0: p_T > 2 \text{ GeV/c}$
 - Proper lifetime of D^0 : ct > 100 μ m
 - Helicity angle of D⁰ decay: $\cos\theta_h < 0.9$
 - D⁰ must point back to primary vertex (IP $\chi^2 < 9$)
 - D⁰ daughter tracks must not point back to primary vertex
 - Hard kaon/pion hadron ID cuts imposed with RICH information
 - Fiducial cuts to exclude edges where B-field causes large D*+/D*acceptance asymmetry
- Software trigger required to fire explicitly on the D⁰ candidate.
- D⁰ mass window: 1844 --1884 MeV/c² (next slide)

Mass spectra

For illustration; not used in calculating ΔA_{CP}

Kinematic binning

- Recap: kinematic binning needed to suppress second-order effects of correlated asymmetries.
- Divide data into kinematic bins of (p_T of D^{*+}, η of D^{*+}, ρ of soft pion, left/right hemisphere) -- 54 bins
- Along similar lines:
 - split by magnet polarity (field pointing up, pointing down)
 - split into two run groups (before & after technical stop)
- Fit final states $D^0 \rightarrow K^+ K^-$ and $\pi^+ \pi^-$ separately => 432 independent fits.

Fit procedure

- Use ID fits to mass difference $\delta m = m(D^0 \pi^+) m(D^0) m(\pi^+)$
- Signal model: double-Gaussian convolved with asymmetric tail: $g(\delta m) = [\Theta(\delta m' - \mu) A(\delta m' - \mu)^{s}] \otimes G_{2}(\delta m - \delta m'; f_{core}, \sigma_{core}, \sigma_{tail})$ Phys. Lett. B 633 (2006) 309; LHCb-PUB-2009-031
- D^{*+} and D^{*-} are allowed to have different mass and resolution.
 - \bullet ... though f_{core} and $(\sigma_{\text{core}}/\sigma_{\text{tail}})$ are shared
- Background model:

$$h(\delta m) = B\left[1 - \exp\left(-\frac{\delta m - \delta m_0}{c}\right)\right]$$

 δm_0 fixed from fit to high-statistics $D^0 \rightarrow K^- \pi^+$ channel Special handling of tricky cases (single Gaussian for lowstatistics bins, background parameters loosened in some kinematic regions).

Consistency for ΔA_{CP} among individual fits: $\chi^2/NDF=211/215$ (56%) Stat error: 0.21% absolute

Systematic uncertainties

- Kinematic binning: 0.02%
 - Evaluated as change in ΔA_{CP} between full 54-bin kinematic binning and "global" analysis with just one giant bin.
- Fit procedure: 0.08%
 - Evaluated as change in ΔA_{CP} between baseline and not using any fitting at all (just sideband subtraction in δm for KK and $\pi \pi$ modes)
- Peaking background: 0.04%
 - Evaluated with toy studies injecting peaking background with a level and asymmetry set according to D⁰ mass sidebands (removing signal tails).
- Multiple candidates: 0.06%
 - Evaluated as mean change in ΔA_{CP} when removing multiple candidates, keeping only one per event chosen at random.
- Fiducial cuts: 0.01%
 - \bullet Evaluated as change in ΔA_{CP} when cuts are significantly loosened.
- Sum in quadrature: 0.11%

$\Delta A_{CP} = [-0.82 \pm 0.21 (\text{stat.}) \pm 0.11 (\text{sys.})]\%$

Significance: 3.5 σ

Further crosschecks

- Numerous crosschecks carried out, including:
 - \bullet Electron and muon vetoes on the soft pion and on the D^0 daughters
 - Different kinematic binnings
 - Stability of result vs time —
 - Toy MC studies of fit procedure, statistical errors
 - Tightening of PID cuts on D⁰ daughters
 - Tightening of kinematic cuts
 - Variation with event track multiplicity
 - Use of other signal, background lineshapes in the fit
 - Use of alternative offline processing (skimming/stripping)
 - Internal consistency between subsamples (splitting left/right, magnet up/ down, etc)
- All variation within appropriate statistical/systematic uncertainties.

Interpretation: lifetime acceptance

- Lifetime acceptance differs between D⁰ \rightarrow K⁺K⁻, $\pi^+ \pi^-$
 - e.g. smaller opening angle => short-lived D⁰ \rightarrow K⁺K⁻ more likely to fail cut requiring daughters not to point to PV than $\pi^+\pi^-$
- Need this to compute how much indirect CPV could contribute.
- Fit to background-subtracted samples passing the full selection, correcting for ~ 3% secondary charm, and extract:

$$\frac{\Delta \langle t \rangle}{\tau} = \frac{\langle t_{KK} \rangle - \langle t_{\pi\pi} \rangle}{\tau} = (9.8 \pm 0.9)\%$$

• ... so indirect CP violation contribution mostly cancels.

Comparison with world average

given our time-acceptance (approx 1.0σ)

Summary

- We have measured the difference in time-integrated CP asymmetries of $D^0 \rightarrow K^- K^+, \pi^- \pi^+$ at LHCb
- World's most sensitive search for CPV in SCS charm decays.
- Result: $\Delta A_{CP} = -0.82 \pm 0.21$ (stat) ± 0.11 (sys) %
- Significance 3.5σ (incl. statistical and systematic uncertainties)
- Indirect CP violation suppressed in the difference $(\Delta < t > /\tau = 9.8 \pm 0.9\%)$ so sensitive mainly to direct CPV.
- Our value is consistent with HFAG average (1 σ apart) but more negative.
- Magnitude of central value larger than current SM expectation
 - ... but charm is notoriously difficult to pin down theoretically
 - $\bullet\,...\,and$ this is still only 3.5σ
- Another 500 pb⁻¹ on tape: watch this space.

First evidence of CP violation in charm.

Integrated luminosity

LHCb Integrated Luminosity at 3.5 TeV in 2011

Showing online luminosity (not final calibration) ²¹

Comparison with world average

• Taking existing HFAG world-average values for ΔA_{CP} and A_{Γ} and propagating them to the LHCb lifetime acceptance, get:

$$\Delta A_{CP} = \Delta a_{CP}^{\text{dir}} + \frac{\Delta \langle t \rangle}{\tau} a_{CP}^{\text{ind}} = (-0.45 \pm 0.27) \%$$

LHCb value is 1.0σ away (approx)

Caution: preliminary. Neglects correlations in world-avg values.

