

ALFA/ATLAS and TOTEM at the LHC

Elastic scattering Total cross-section

Diffraction

COTEM

Karsten Eggert on behalf of the ATLAS and TOTEM Collaborations

Hadron Collider Physics Symposium 2011 (14 – 18 Nov.) Paris, France

Karsten Eggert– p. 1

Total Cross-Section and Elastic Scattering at low |t|

Beam Lines with Roman Pots

The ALFA Scintillating Fiber Detector

Principle of multi-layer fiber detector 2 x 10 planes (u and v) of staggered 64 fibers (0.5 mm) Overlap detectors for position calibration (upper-to-lower detectors) Trigger scintillators

Measurement of position and angle in both projections

Top-View of the ALFA scintillating fiber detector

20 fiber planes in u & v 2 trigger scintillators

The TOTEM Silicon Detectors

Edgeless Silicon Detectors (< 50 μm) 10 planes (u & v) with 60 μm strip Horizontal Detector:

Track alignment Diffraction

TOTEM

Beam Optics

(x^{*}, y^{*}): vertex position (θ_x^*, θ_y^*): emission angle: $t \approx -p^2 (\theta_x^{*2} + \theta_y^{*2})$ $\xi = \Delta p/p$: momentum loss (diffraction)

$$y_{\rm det} = L_y \theta_y^* + v_y y^*$$

 $\beta^* = 90 \text{ m: } L_y = 270 \text{ m, } v_y \approx 0$ \rightarrow Reconstruct via track positions

beam-optical elements (magnets)
(*2)
$$y = \frac{1}{\theta_{y}} =$$

$$\frac{dx_{\text{det}}}{ds} = \frac{dL_x}{ds}\theta_x^* + \frac{dv_x}{ds}x^*$$

		Beam width @ vertex	Angular beam divergence	Min. reachable t
		$\sigma_{x,y}^* = \sqrt{\varepsilon\beta^*}$	$\sigma_{\Theta}^* = \sqrt{\frac{\varepsilon}{\beta^*}}$	$\left t_{\min}\right = n_{\sigma}^{2} \frac{p^{2} \varepsilon}{\beta^{*}}$
Standard optics	$\beta^* \sim 1-3 \text{ m}$	$\sigma_{x,y}^{*}$ small	$\sigma(\theta_{x,y}^{*})$ large	$ t_{min} \sim 0.31~GeV^2$
Special optics	$\beta^* = 90 \text{ m}$	$\sigma_{x,y}^{*}$ large	$\sigma(\theta_{x,y}^{*})$ small	$ t_{min} \sim 10^{-2} \ GeV^2$

Beam-Based Roman Pot Alignment (Scraping)

The top RP approaches

the beam until it

A primary collimator cuts a sharp edge into the beam, symmetrical to the centre

When both top and bottom pots are touching the beam edge:

- they are at the same number of sigmas from the beam centre as the collimator
- the beam centre is exactly in the middle between top and bottom pot
- \rightarrow Alignment of the RPs relative to the beam

The RP – beam contacts are also registered as spikes in the trigger rate

The last 10 µm step produces a spike in a Beam Loss Monitor downstream of the RP

p. 8

Elastic Scattering: Collinearity

Karsten Eggert– p. 10

TOTEM

Elastic scattering: differential cross-section

TOTEM

Final result after acceptance corrections and t - smearing

Elastic scattering – from ISR to Tevatron

Diffractive minimum: analogous to Fraunhofer diffraction: |t|

|t|~ p² θ²

- exponential slope B at low |t| increases
- minimum moves to lower |t| with increasing s
 - \rightarrow interaction region grows (as also seen from σ_{tot})
- depth of minimum changes
 - \rightarrow shape of proton profile changes
- depth of minimum differs between pp, p⁻p
 → different mix of processes

Comparison to some models

Better statistics at large t needed (in progress)

Karsten Eggert– p. 14

Angular Correlations between outgoing protons

Background negligible < 1%Width of correlation band in agreement with beam divergence (~ 2.4 µrad)

Final Differential Cross-Section for t > 2 x 10 -2 GeV² (Data taking: June 2011 for 20 min.)

TOTEM

Measurement of total, inelastic and elastic cross-sections comparison with previous results

3. Data taking Oct. 2011 with $\beta^* = 90$ m

MD = main detector, OD = Overlap Detector

Date	Run	Triggers	Position	Trigger & Purpose
Oct 18	191291-191305	17 million	Various, 7mm	Scraping
Oct 18	191312-191313	0.5 million	7mm	OD only for distance
Oct 18	191321	2 million	5.5 sigma	MD&OD standalone
Oct 18	191322	10 million	8.0 sigma	MD&OD standalone
Oct 18	191323	0.5 million	8.0 sigma	OD only for distance
Oct 20	191366	10 million	6.5 sigma	MD&OD standalone
Oct 20	191367	1.2 million	6.5 sigma	OD only for distance
Oct 20	191373	55 million 8 million	6.5 sigma	ALFA PEB stream Full ATLAS stream
Oct 20	191377-191383	4 million	6.5 sigma	OD only for distance
Oct 20	191386-191388	10 million	6.2 sigma	MD&OD standalone

Total amount of triggers ~ 100 million

1.4 x 10⁶ elastic triggers

2 x 10⁶ diffractive triggers

RP position (V) [sigma]	trigger schema	trigger on bunch	Run time [min]	Events	Integ. Lumi [ub⁻¹]
6.5	$RP_all_OR + T2 + BX$	1950,2000,2050 2100, 2200, 2300	64.9	2.4E+6	1.6
6.5	$RP_V_and + T2 + BX$	all	13.4	5.8E+5	5.2
6.5	$RP_all_and + T2 + BX$	all	217.5	9.3E+6	77
5.5	$RP_all_and + T2 + BX$	all	50.7	1.9E+6	16
4.8	$RP_all_and + T2 + BX$	all	16.4	6.2E+5	4.9
		sum	363	1.5E+7	104

Run at β^* = 90 m with closest approach

Diagonal double arm coincidence selects elastic candidates

Map of track intercepts in the Roman Pot Detectors

Entries 118029

Clean elastic candidates due to low pile-up (< 5%)

 $L_x = 0 - 3 m$

 $L_x = 10 - 13 m$

TOTEM

Collinearity plots

p. 20

Outlook: Measurement of p in the Coulomb-nuclear Interference Region?

Aim: get also the last ingredient to σ_{tot} from measurement rather than theory.

 \rightarrow might be possible at sqrt(s)=7 TeV with RPs at 6 σ

→incentive to develop very-high- β^* optics before reaching 14 TeV ! e.g. try to use the same optics principle as for 90m and unsqueeze further.

Summary and Outlook

• Totem results

- Measurements of the elastic scattering cross-section in the range 2 10 $^{-2}$ < |t| < 2.5 GeV 2
- Measurements of the elastic, inelastic and total cross-sections
- Extend the |t| range to 5 10 $^{-3}$ < |t| < 4. GeV 2

• Successful data taking in Oct. 2011 of both experiments with the dedicated optics $\beta^* = 90$ m

- Few 10⁶ elastic scattering events in each experiment
- Repeat the above measurements with both experiments and larger statistics
- In 2012: Repeat data taking with $\beta^* = 90$ m and more sophisticated triggers
 - TOTEM will take data together with CMS and exchange triggers
- Develop and run a new optics with $\beta^* \sim 1$ km to study the Coulomb interference region
- Both experiments have started an extensive programm on diffractive physics
 - Single diffraction
 - Double Pomeron Exchange

The Forward trackers (with trigger capability) in TOTEM

TOTEM

Single diffraction low ξ Correlation between leading proton and forward detector T2

run: 37280003, event: 3000

Double Pomeron Exchange

Much better acceptance with CMS with ALFA and ATLAS

run: 37250009, event: 14125

TOTEM

Karsten Eggert-

p. 25

The ALFA Scintillating Fiber Detector

Upper OD

Principle of multi-layer fiber detector 2 x 10 planes (u and v) of staggered 64 fibers (0.5 mm) Overlap detectors for position calibration (upper-to-lower detectors) **Particle in** Trigger scintillators **both ODs**

2 stations with a lever arm of 4 m

Measurement of position and angle in both projections

Lower OD

Karsten Eggert– p. 26