

*The identification of b-jets is crucial to characterize a variety of Standard Model (SM) and discovery channels like the measurement of bottom or top quark production, the search for Higgs boson, and many New Physics scenarios. *The b-tag algorithms in CMS rely on the long life time, high mass and large momentum fraction of b hadrons produced in b-quark jets, as well as on the presence of soft leptons from semi-leptonic b-decays.

ති 10⁶

10⁴ 10⁴

 10^{3}

 10^{2}

10

Data/MC

<u>MS prelim. at 7 TeV, 0.89 fb⁻⁻</u>

B-TAGGING OBSERVABLES

Effect of Pile-Up

^{*}Due to the high instantaneous luminosity during the 2011 data taking, the number of collision taking place in the same bunch crossing (pile-up events) is of the order of 5 to 11 on average

*The presence of pile-up strongly increases the track multiplicity in the events (Fig. 1: Left). A specific offline selection on the tracks is applied to remove the tracks originating from pile-up [1] (Fig.1: Right).

*Variation in the pile-up condition over the running period is taken in to account by weighting the number of pile-up interaction in the MC simulation.

1) Impact Parameter

*The impact parameter (IP) is the distance between the track and the primary interaction vertex (PV) at the point of closest approach (Fig.2).

*The IP is calculated in 3 dimensions thanks to the good x-y-z resolution provided by the pixel detector.

*The IP is positive (negative) if the track is produced downstream (upstream) with respect to the PV (**Fig.2**).

*The impact parameter significance IP/ σ (IP) is used in order to take into account resolution effects.

<u>Effects of the finite b lifetime on the IP /σ(IP)</u>

*IP is Lorentz invariant and due to the b-hadron lifetime the typical IP scale is set by $c\tau \sim 480 \mu m$. *For light quarks (u, d, s) or gluons (g), the signed IP/ σ (IP) is expected to be symmetric; for weakly decaying b-hadrons, the IP/ σ (IP) is mostly positive [2] (**Fig.3: left and center**). *One can use the negative tail of the IP/ σ (IP) distribution to extract the probability density function for tracks not coming from b/c-jets.

2) Secondary Vertex

*Thanks to the high resolution of the CMS traking system, one can reconstruct the Secondary Vertex (SV), the point where the b-hadron decays (Fig.2).

3) Lepton

*We can also use muon from b-hadron decay to tag the b-jets. In (**Fig.3: Right**) we show the p_T of the muon relative to the jet direction [1].

B-TAGGING ALGORITHMS

The output of each b-tagging algorithm in CMS is a "discriminator" value on which the user can cut on to select different regions in the efficiency versus purity phase space. We use mainly four different algorithms[1, 2]:

1)Track counting algorithm: it identifies a b-jet if there are at least N tracks each with a significance of the impact parameter above a given threshold. The tracks are ordered in decreasing IP/ σ (IP) and the discriminator is the impact parameter significance of the Nth track .

To get an high b-jet efficiency we can use the IP/ σ (IP) of the second track (TCHE), to select b-jets with high purity the third track is the better choise (TCHP). (Fig.3: Left, Center)

2) Jet Probability algorithm The jet probability algorithm combines information from all the selected tracks in the jet to compute a "probability" for tracks to originate from the PV. (Fig.4: Left). [1] The JetBprobability is then defined in a similar way but giving more weight to the four most displaced tracks. (Fig.4 Right)

3) Soft-Lepton tagging algorithms rely on the properties of muons or electrons from semileptonic B-decay. (Fig.3: Right)

4) Secondary Vertex tagging algorithms rely on the reconstruction of at least one secondary vertex. The significance of the 3D flight distance is used as a discriminating variable. Two variants based on the number of tracks at SV are considered: $N_{tr} \ge 2$ for "high efficiency" (SSVHE), (**Fig.4: Bottom left**) and N_{tr}≥3 for "higt purity" (SSVHP) [2] (**Fig.4: Bottom center**). The **"combined secondary vertex"** algorithm provides discrimination even when no secondary vertices are found. The "Mass of reconstructed charged particles the Secondary Vertex" is used to measure the b-tagged sample purity [1] (Fig.4: Bottom right)

CMS prelim. at 7 TeV, 0.89 fb

Fig.3: (Left , center) IP/ σ (IP) distribution. (Right) p_{τ} of the muon relative to the jet axis.

data (HLT_BTagMu

OCD (b quark)

CMS prelim. at \sqrt{s} = 7 TeV. 0.50 fb⁻¹

Jet p_ [GeV]

CMS Preliminary, $\sqrt{s} = 7 \text{ TeV}$

MC c MC c MC udeg MC udeg F ίđ. Outa Market 1.4 1.2 ╡_{┇┫╶}┓┰╾╸┑┑_┺┍╼╻╸╸╸╸╸╸╸╸╸_╋┱_╋┱_╋╋_╋╋_╋╋_╋╋<mark>╋</mark>╋<mark>╋</mark>╋<mark>╋</mark>╋<mark>╋</mark>╋ 3-track SV mass [GeV/c²] SSVHE discriminator SSVHP discriminator

MISTAGRATE RATE AND B-TAG EFFICIENCY MEASUREMENTS FROM DATA

We can estimate the mistag rate using the negative tail of discriminators (tracks with negative IP or using SV with negative decay length). The measured mistag rates in data and data/MC scale factors are presented as a function of the jet p_{τ} (**Fig:8**) for the TCHE algorithm and working point (M) [1].

We measure the b-tag efficiency in jets with a semi-muonic b-hadron decay, by using the information of the p_

of the muon relative to the jet axis and the request of another b-tagged jet in the same event (**Fig.9**)

Fig.9:

Measured

b-tagging

factor as a

efficiency and

data/MC scale

0.2

CMS Simulatio

PERFORMANCE OF THE TAGGERS

Varying the cuts on the discriminator we obtain a different performance of the tagger.

We establish standard operating points as, ``loose" (L), ``medium" (M), and ``tight" (T), being the value at which the tagging of light jets is estimated from MC to be 10%, 1%, or 0.1%, respectively. In (**Fig.5:Left**) the performance for different taggers are shown. In (Fig.6:Right) the effects of the pile-up on the performance of the TCHE tagger is presented [2].

100.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 b-jet efficiency

Fig.5: (Left) Performance of all b-taggers obtained on the simulated QCD events. The performance are shown in the form of udsg jets versus b-jets [2]. Fig.6: (Right) Light flavor mistag efficiency versus b-tagging efficiency for different pile-up scenario, for the TCHE tagger

are implemented in three steps:

1) jets are selected without any tracking requirements.

2) the jets are matched to tracks reconstructed using the Pixel Tracker alone

3)b-quark candidates are selected if they have at least one or two tracks with a 3D impact parameter Significance above a given threshold.

The motivation for applying b-tagging in the trigger is a reduction of the trigger rates, while keeping the signal efficiency high at the same time. The typical rate reduction is a factor of 5-10.

> Fig 10:(top) performance of the Track Counting High Efficiency discriminator in a 4-jet trigger. (bottom): performance

of the same discriminator in a trigger requiring missing transverse energy of clustered objects MHT > 55 GeV and HT > 300 GeV and jets with transverse energy above 30 GeV.

Inclusive production cross section of b-jets [4]. •bb angular correlation based on Secondary Vertex reconstruction [5]. Search for Bs -> µµ decay. [6]

entres 101

10

 10^{2}

EW PHYSICS:

Measurement of the WW, WZ, ZZ cross section. [7] Measurement of associated charm production in W final state. [8]

Top-PHYSICS:

Cross-section measurement of top pair production in various final states: dileptons [10,11], lepton+jets [12], all hadronic [3]. Single top in t channel [13]. Top mass measurement [14].

New PHYSICS:

Search for supersymmetry in events with b-jets and missing transverse momentum. [15] Search for supersymmetry in all hadronic events.[16]

Search for an Heavy Bottom-like quark. [17]

Search for an Heavy Top-like quark.[18]

Search for pair production of a fourth-generation t' quark in the

lepton-plus-jets channel. [19]

Inclusive search for a fourth generation of quarks. [20]

at \sqrt{s} = 7 TeV ". J. High Energy Phys. 03 (2011) 136 [6] "Search for $Bs^0 \rightarrow \mu\mu$ and $Bs \rightarrow \mu\mu$ decays in pp collisions at = 7 TeV". CERN-PH-EP-2011-120 [7] "Measurements of the WW,WZ,ZZ, cross cection at CMS". CMS PAS EWK-11-010 [8] "Measurement of associated charm production in W final state I pp collision at \sqrt{s} =7 TeV". **CMS PAS EWK-11-013** [9] "First measurement of the cross section for top-quark pair production in p–p collisions at \sqrt{s} = 7 TeV". Phys. Lett. B 695 (2011) 424-443 [10] "Measurement of the ttbar production cross section in the dilepton channel in pp collisions at \sqrt{s} = 7 TeV with a luminosity of 1.14 fb-1". CMS PAS TOP-11-005 [11] "First measurement of the ttbar production cross section in the dilepton channel with tau leptons in the final state in pp collisions at $\sqrt{s}=7$ TeV". CMS PAS TOP-11-006 [12] "Measurement of the ttbar Pair Production Cross Section at $\sqrt{s} = 7$ TeV using b-quark Jet Identification Techniques in Lepton + Jet Events". CMS PAS TOP-11-003 [13] "Measurement of the t-channel single top quark production cross section in pp collision at √s = 7 TeV". Phys.Rev.Lett.107(2011)091802 [14] "Measurement of the ttbar production cross section and the top quark mass In the Dilepton channel in pp collision at $\sqrt{s} = 7$ TeV". J.High Energy Phys.07(2011)049. [15] "Search for supersimmetry in events with b-jets and missing transverse momentum at LHC". J.High Energy Phys.07(2011)091802 [16] "Search for supersymmetry In all hadronic events with b-jet". CMS PAS SUS-11-006 [17] "Search for an Heavy Bottom-like qurak in 1.14 fb-1 of pp collision at $\sqrt{s} = 7$ TeV". CMS PAS EXO-11-036 [18] "Search for an Heavy Top-like quark in the Dilepton Final state in pp collision at \sqrt{s} = 7 TeV". CMS PAS EXO-11-050 [19] "Search for pair production of a fourth-generation t' quark in the lepton-plus-jets channel with the CMS experiment". CMS PAS EXO-11-051 [20] "Inclusive search for a fourth generation of quarks with the CMS experiment". CMS PAS EXO-11-054