SUSY & Beyond Standard Model Higgs Searches at the Tevatron

presented by

Abid Patwa

Brookhaven National Laboratory, USA

on behalf of the CDF and DØ Collaborations

Hadron Collider Physics Symposium 2011 November 14 – 18, 2011 Paris, France

[SUSY + BSM] Higgs: Outline

* Several extensions to SM predict additional Higgs bosons

- behave similar to SM Higgs, but exhibit different couplings
- branching ratio (BR) of various Higgs decays can be enhanced significantly

. MSSM Higgs Search

- 5 physical Higgs bosons
 φ (= h⁰, H⁰, A⁰) and H[±]
- main searches
 - ↔ φb → bbb, φ → ττ, φb → ττb
 - ♦ charged Higgs in top decays

II. Extended Higgs sector models

- Doubly Charged Higgs (H^{±±})
- Hidden Valley particles
- III. Fermiophobic Higgs Model (FHM):
 - Higgs primarily couples to bosons, BR to fermions significantly suppressed

Higgs bosons in the MSSM

- * MSSM Higgs requires 2 doublets
 - yields: ϕ (= h⁰, H⁰, A⁰) and H[±]
- * At tree-level, MSSM Higgs fully specified by two free parameters
 - m_A
 - $\tan\beta = \langle H_u \rangle / \langle H_d \rangle$ (ratio of v.e.v. of 2 Higgs doublets)
- Radiative corrections introduce dependence on additional SUSY parameters
- * Inclusive production cross section $\sigma(p\bar{p} \rightarrow h/H/A)$ is enhanced
 - enhancement depends on $tan\beta$
- * h/H/A decays, in most parameter space:
 - $\phi \rightarrow b\overline{b}$ (~90%)
 - $\phi \rightarrow \tau \tau$ (~10%)
 - smaller BR but cleaner signature (vs. large QCD background in b mode)

CDF: $\phi \rightarrow \tau \tau$ **Search**

- * CDF considers $\tau_{\mu}\tau_{had}$, $\tau_{e}\tau_{had}$, and $\tau_{e}\tau_{\mu}$ channels with 1.8 fb⁻¹ data, selected by:
 - isolated e or μ: opposite-sign (OS) from hadronic τ
 - τ's selected using variable-size cone algorithm
 - suppress W+jets background by requirement on relative direction of visible τ decay products and ∉_T

- Data agrees with backgrounds for visible mass
 - set $\sigma \times BR$ limits for 90 GeV < m_A < 250 GeV

CDF: PRL 103, 201801 (2009)

DØ: Inclusive ττ Search

- * [New: submitted to PLB] result using 5.4 fb⁻¹ data for $\tau_{\mu}\tau_{had}$ and $\tau_{e}\tau_{\mu}$
 - ~ 5 × more data than earlier 1.0 fb⁻¹ published result: PRL 101,071804 (2008)
- Search for two high-p_T isolated leptons, opposite-sign
 - τ_{had} discriminated from jets via τ -ID NN
 - estimate multijet bkgnd directly from data

No excess in data across visible mass spectrum

- upper limits on σ × BR as function of φ mass
 - extended search range up to
 300 GeV

- Interpret limits in representative MSSM scenarios
 - m_h^{max} and no-mixing for $\mu = \pm 200 \text{ GeV}$
 - DØ 5.4 fb⁻¹ result: FeynHiggs v2.8.1
 - Includes updated bbH PDFs at NNLO (MSTW2008)
- * Reach expected sensitivity of tan β ~ 30 at low M_A ~ 140 GeV
 - comparable to limits from ATLAS and CMS using \mathcal{L} = 36 pb⁻¹

CDF: $\phi \mathbf{b} \rightarrow \mathbf{b} \overline{\mathbf{b}} \mathbf{b}$ Search

ີບ 2250

- * $\phi \rightarrow b\bar{b}$ search difficult due to large multijet background
 - consider ϕ produced in association with one b-jet
- [New: submitted to PRD] 2.6 fb⁻¹ * data with 3 b-tagged jets
- Model multijet backgrounds using • dijet mass of 2 lead jets (m₁₂) & flavor separator (x_{tags})
 - search for enhancements in m_{12}

0.35

0.25

0.2

0.15

0.1 0.05

150

2

200

3

Background Templates

100

0.225

0.2

0.175

0.15

0.125

0.1

0.075

0.05

0.025

٥

50

GeV/c²

fraction/(15

Best Fit (with signal template)

CDF, 2.6 fb⁻¹

bbB

5.2 fb⁻¹ search requires 3 b-tagged jets via NN b-tagger

Improve sensitivity by separating into 3- and 4-jet channels
 likelihood discriminates b-jet pair via Higgs signal from multijet backgrounds

Dijet invariant mass of two leading jets used as input to limit

$\phi b \rightarrow b \bar{b} b$ Results: Limits

95% C.L. Mass-Dependent Cross Section Limits

 DØ: observe ~2.5σ deviation at ~120 GeV for narrow-width case [after trial factors, significance of ~2.0σ]

 CDF: deviation at ~150 GeV, with 1-CL_b p-value=0.23% (~2.8σ) [trial factors, 1.9σ significance to observe such an excess at any masses]

 General limits applicable to any narrow scalar with bb final states produced in association with b-jet

$\phi b \rightarrow b \bar{b} b$: MSSM interpretation

MSSM Exclusions in $(M_A, \tan\beta)$ Parameter Space

 Translate limits in MSSM benchmark scenarios in (M_A, tanβ) parameter space

- Higgsino mass term, $\mu < 0 \Rightarrow$ enhanced production for 3b
- at large $tan\beta$
 - enhances the bbH coupling as well as increases width of the Higgs

$\phi \mathbf{b} \rightarrow \tau_{\mathbf{e}} \tau_{\mathbf{had}} \mathbf{b}$ Search

- * 3.7 fb⁻¹ search considers $\phi \mathbf{b} \rightarrow \tau_{\mathbf{e}} \tau_{\mathbf{had}} \mathbf{b}$
 - use developed techniques from both $\phi \rightarrow \tau \tau$ and $\phi b \rightarrow b \overline{b} b$ searches
 - complimentary to $\phi \rightarrow \tau \tau$ channel as it does not suffer from $Z \rightarrow \tau \tau$ backgrounds

* Discriminate against different backgrounds via MVA techniques

- suppress $Z \rightarrow \tau \tau$ (Z+jets) \Rightarrow require one b-tag jet via NN b-tagger
- construct $t\bar{t} (D_{top})$ and multijet (D_{MJ}) discriminants per Higgs mass point

• Combine for final discriminant: $[(D_{MJ} + 10)/20] \times D_{top}$

$\boldsymbol{\varphi} \boldsymbol{b} \rightarrow \tau_{\mu} \tau_{\textbf{had}} \boldsymbol{b} \; \textbf{Search}$

* [New: PRL 107, 121801 (2011)] 7.3 fb⁻¹ search considers $\phi \mathbf{b} \rightarrow \tau_{\mu} \tau_{had} \mathbf{b}$

- supersedes earlier 2.7 fb⁻¹ published result: PRL 104, 151801 (2010)
- improve sensitivity
 - \diamond inclusive trigger: single μ , $\mu + \tau_{had}$, $\mu + jet$, $\not\!\!E_T + jet$ triggers
 - high-performance signal-to-background discriminants

Form likelihood for final discriminant: D_M, D_{top}, NN_b, M_{hat}

$\phi \mathbf{b} \rightarrow \tau_{\mathbf{e},\mu} \tau_{\mathbf{had}} \mathbf{b}$ Results

 $\tau_{u}\tau_{h}$ b: at low M_A, most stringent limit to-date in a direct search at the Tevatron

DØ Combined Limits: $\phi b \rightarrow \tau \tau b$, $\phi b \rightarrow 3b$

* [New in 2011] DØ MSSM Higgs combination

* Inputs to limits: 5.2 fb⁻¹ $\phi b \rightarrow b\bar{b}b$ and 7.3 fb⁻¹ $\phi b \rightarrow \tau_{\mu}\tau_{had}b$

- assume narrow Higgs and sum rule: $BR(\phi \rightarrow b\bar{b}) + BR(\phi \rightarrow \tau\tau) = I$
 - $\diamond~$ for BR($\varphi \rightarrow \tau \tau)$ = 0.06, 0.10, and 0.14
- correlate b-tag efficiency and jet modeling systematics between channels
- up to $M_{\phi} \simeq 180 \text{ GeV}$: $\phi b \rightarrow \tau \tau b$ dominates limits;
 - $\phi b \rightarrow 3b$ at higher mass as dependencies on the limit from tau BR decreases

* Translate to $(M_A, \tan\beta)$ exclusions

Tevatron combination from 3b searches in progress...

Doubly Charged Higgs Search

- Models with extended Higgs sector predict H^{±±}
 - $H^{\pm\pm} \rightarrow \tau^{\pm}\tau^{\pm}$ dominate in $SU(3)_c \times SU(3)_L \times U(1)_Y$ (3-3-1) gauge symmetric models
 - Higgs triplet model based on seesaw neutrino mass mechanism
 - ♦ hierarchy of neutrino masses yields equal BR for H^{±±} → ττ, μτ, μμ
- * [New: accepted in PRL] Ist search for $H^{\pm\pm} \rightarrow \tau^{\pm}\tau^{\pm}$ at hadron collider, 7 fb⁻¹
 - require at least one μ & two τ_{had}
 - increase sensitivity to signal by categorizing samples with different backgrounds
 - ↔ q_{τ1} = q_{τ2}: Z→ττ + jets, where jet mimics same-sign lepton
 - \Rightarrow q_{τ1}=-q_{τ2}: WZ→µve⁺e⁻, where electrons misidentified as τ (→ρv_τ)

Doubly Charged Higgs: Results

- Set 95% C.L. observed (expected) lower limits of $M[H_{L}^{\pm\pm}]$ *
 - $BR(H_{\perp}^{\pm\pm} \rightarrow \tau^{\pm}\tau^{\pm}) = I: M[H_{\perp}^{\pm\pm}] > I28 (II6) \text{ GeV}$
 - $BR(H_{L}^{\pm\pm} \rightarrow \mu^{\pm}\tau^{\pm}) = I: M[H_{L}^{\pm\pm}] > I44 (I49) \text{ GeV}$
 - $BR(H_{\iota}^{\pm\pm} \rightarrow \tau^{\pm}\tau^{\pm}) = BR(H_{\iota}^{\pm\pm} \rightarrow \mu^{\pm}\tau^{\pm}) = BR(H_{\iota}^{\pm\pm} \rightarrow \mu^{\pm}\mu^{\pm}) = \frac{1}{3}: M[H_{\iota}^{\pm\pm}] > 138 (130) \text{ GeV}$

200

CDF: Hidden Valley (HV)

- [New: submitted to PRD] 3.2 fb⁻¹ search: heavy particles with displaced secondary vertex (SV)
 - Hidden Valley (HV) model
 - each HV decays into two b-quarks, with
 4b final states

* Signature

 3+ jets with modified vertexing: large HV decay length [O(~I cm)]

- Optimize signal vs.
 background with variables
 based on reconstructed vertex
 - ψ : Jet impact parameter
 - ζ: Decay vertex of HV particle
- ♦ Signal: ψ, ζ > 0
- multijet background:
 ψ, ζ uniformly distributed ~ 0

0

Hidden Valley (HV): Results

+bū)(dd 45

40

35

30

25

 $M_{HV} = 20 \text{ GeV/c}^2 \text{ c}\tau_{HV} = 1.0 \text{ cm}$

low-HV mass

Observed Limit

Expected Limit

SM gg→Higgs prod.

2σ

Split into low- and high-HV * mass search

observe | event, 0.3 - 0.6 expected background events

set $\sigma \times BR$ limits in each HV mass search

Fermiophobic $H_f \rightarrow \gamma \gamma$ Search

- CDF: 7.0 fb⁻¹: submitted to PRL
 DØ: 8.2 fb⁻¹: PRL 107, 151801 (2011)
- Distinguish photons with misidentified jet backgrounds using NN
 - CDF: NN enhances central photon-ID as well as central + end-plug photons
 - DØ: implement energy-weighted width of central preshower clusters

- Search for excess of events in γγ mass spectrum

 - DØ: improve sensitivity using BDTs
- DØ, for Fermiophobic couplings, exclude at 95% CL: m_{Hf} < 112.9 GeV

CDF exclude: m_{Hf} < 114 GeV</p>

Fermiophobic Higgs: Combined Limits

CDF

* [New] Combined Tevatron search results on fermiophobic Higgs production

- $gg \rightarrow H_f$ suppressed; produced via WH_f , ZH_f , and Vector Boson Fusion processes
- Higgs decays to γγ or W⁺W⁻

* Search modes

Tevatron exclusion: m_{Hf} < 119 GeV</p>

- sensitivity beyond that of combined LEP experiments
- currently most restrictive limits on fermiophobic Higgs model

Summary

* CDF and DØ actively searching for Higgs in models beyond SM

- reported results with up to 8.2 fb⁻¹ of data
- also H[±] and NMSSM searches [not covered here]

Solution States MSSM Higgs

- $(M_A, \tan\beta)$ exclusions from $(b)\phi \rightarrow (b)\tau\tau$ searches probing theoretically interesting regions of $\tan\beta \simeq 20-30$
- forthcoming searches with larger datasets should provide further insight into deviations from expectation in 3b search at low M_A
- updated DØ as well as Tevatron combinations expected imminently

Models with Extended Higgs sector

- DØ: first search for $H^{\pm\pm} \rightarrow \tau^{\pm}\tau^{\pm}$ decays at hadron collider
- CDF's Hidden Valley results can be used to constrain other models

Fermiophobic Higgs

most stringent limits on Fermiophobic Higgs mass

Tevatron delivered ~11.9 fb⁻¹ of data; Stay tuned for updates and combinations expected soon!

Reference Slides

τ -Identification

narrow cal energy clusters matched to tracks, with or without EM subclusters \Rightarrow separate τ 's into 3 categories, defined by their decay mode

- $\pi\nu$ -like [type 1], $\rho\nu$ -like [type 2], and 3-prongs [type 3]
- implement Neural Nets (NN) per τ -type to discriminate τ signal from multijet background

Visible Mass

- * After final event selections for $\phi \rightarrow \tau \tau$, irreducible background from $Z \rightarrow \tau \tau$
 - smaller contribution from EW and QCD multijet processes
- * Distinguish Higgs boson by its mass
 - presence of neutrinos in final states \Rightarrow not possible to reconstruct $\tau\tau$ mass
 - use visible mass: the invariant mass of the sum of the τ decay plus missing transverse energies
 - * exploit fact that signal appears as an enhancement above $Z{\rightarrow}\tau\tau$

$$M_{VIS} = \sqrt{(P^{\tau 1} + P^{\tau 2} + P_T)^2}$$

Use 4-vectors of:

- P^{τ1}, P^{τ2} of visible tau decay products
- $\mathcal{P}_T = (\mathcal{E}_T, \mathcal{E}_x, \mathcal{E}_y, 0)$, where \mathcal{E}_x and \mathcal{E}_y indicate components of \mathcal{E}_T
- M_{vis} used as input to σ×BR limit calculation in inclusive ττ search

- * For neutral Higgs searches: $\sigma \times BR$ limits \Rightarrow interpreted in MSSM
- * Tree-level: Higgs sector of MSSM described by m_A & tan β
 - radiative corrections introduce dependence on additional SUSY parameters
- * Five additional, relevant parameters
 - M_{SUSY} Common Scalar mass: parameterizes squark, gaugino masses
 - X_t Mixing Parameter: related to the trilinear coupling $a_t \rightarrow$ stop mixing
 - M₂ SU(2) gaugino mass parameter
 - μ Higgs sector bilinear coupling (mass parameter; where $\Delta_b^{\text{loop}} \propto \mu \times \tan\beta$)
 - m_g gluino mass: comes in via loops

* Two common benchmarks

- m_h^{max} (max-mixing): Higgs boson mass, m_h, close to maximum possible value for a given tanβ
- no-mixing: vanishing mixing in stop sector ⇒ small Higgs boson mass, m_h

Constrained Model: Unification of $SU(2)$ and $U(1)$ gaugino masses				
	m _h ^{max}	no-mixing		
M _{SUSY}	I TeV	2 TeV		
X _t	2 TeV	0		
M_2	200 GeV	200 GeV		
μ	±200 GeV	±200 GeV		
m _g	800 GeV	1600 GeV		

DØ: φb → bbb Analysis Overview

* 5.2 fb⁻¹ search requires

- separate into 3- and 4-jet channels: $p_T^{\text{jet}} > 20$ GeV, $|\eta| < 2.5$
- 3 b-tagged jets with NN b-tagger (>0.775), with 2 jets in pair: $p_T^{jet 1,2} > 25$ GeV
- * Background composition determined from 3-jet sample
 - fit MC simulated events to data over b-tagging points: 0-, I-, 2-, and 3-tags

* Background modeling

- irreducible $b\bar{b}b$ background \Rightarrow indistinguishable from any possible signal
- no control regions to normalize to data
 - model background shape using combination of data and simulation
 - Predict 3 b-tag bkgnd shape from 2 b-tag data, scaled by simulated 3/2-tag ratio

* 6-variable jet-pair likelihood discriminant $[\mathcal{D}]$

DØ: $\phi \mathbf{b} \rightarrow \mathbf{b} \mathbf{\bar{b}} \mathbf{b}$ Search (cont.)

- Background model verified in a signal-depleted region
 - pick lower likelihood jet-pairing and select $\mathcal{D} < 0.12$
 - observe agreement [χ²/n.d.f. = 0.86]
 between data and background model

- Dijet invariant mass of two leading jets used as input to σ×BR limit
 - limit calculated using only the shape difference between signal and background

Multivariate Methods: Variables

R S	$H_f \rightarrow \gamma^{\gamma}$	y Search	(FHM)
-----	-----------------------------------	----------	-------

5-variable γ -Neural Network (NN $_{\gamma}$)	BDT
$\Sigma_{trks}p_T(trks)$	Μ _{γγ}
N_{cells} in CAL Layer 1 in $\Delta R < 0.2$	$\Delta \phi_{\gamma\gamma}$
$\rm N_{cells}$ in CAL Layer 1 in 0.2 < ΔR < 0.4	$\mathbf{P}_{T}^{\gamma\gamma}$
N _{CPS} clusters assoc. with EM _{CAL}	$Pr^{\mathrm{\gamma}1}$
CPS cluster: energy-weighted width	$PT^{\gamma 2}$

∮b → bb̄b Search

6-variable Likelihood Discriminant for "jet-pair" with $1^{st} \& 2^{nd}$ leading jets: max[$\Sigma p_T^{j1,2}$]) $\Delta\eta$ of 2-jets in the pair $\Delta \phi$ of 2-jets in the pair angle: $\phi = a\cos(\text{lead jet, total } p_T \text{ of jet pair})$ momentum balance: $|p_{b1} - p_{b2}| / |p_{b1} + p_{b2}|$ combined rapidity of jet pair event sphericity

ϕ b → τ _μ τ _{had} b Search				
anti-top NN Discriminant (D _{top})	anti-multijet NN Discriminant (D _{MJ})			
$D_{final} = Likelihood [D_{top}, D_{MJ}, NN_{b-tag}, M_{hat}]$				
N _{jets} (*)	Muon p_T (*)			
$H_{T} = \sum_{jets} p_{T}[jets] (*)$	Tau p_T (*)			
$E_{T} = p_{T}^{\tau} + p_{T}^{\mu} + H_{T} (*)$	Δφ[μ, τ]			
$ \Delta \phi[\mu, \tau] $ (*)	$H_{T} = \Sigma_{jets} p_{T}[jets]$			
Δφ[μ, ΜΕΤ]	MET			
$\mathcal{A}_{T} = [p_{T}^{\mu} - p_{T}^{\tau}]/p_{T}^{\tau}$	m _T [μ, τ, MET, jet]			
MET	M _{collinear}			
m _T [μ, MET]	M_{hat}			
$m_T[\mu, \tau, MET, jet]$	-			
M _{collinear}	-			
M_{hat}	-			
N-object m_T defined by: $m_T[O_1,,O_k,,O_N] =$	$\sqrt{\sum_{i=1}^{j \leq N} \sum_{j=1}^{j \leq N} p_T[O_i] \times p_T[O_j] \times (1 - \cos \Delta \varphi[O_i; O_k])}$			

(*) = Also used in 3.7 fb⁻¹ $e\tau_{had}$ +b Search

MSSM Charged Higgs Search

a

q

W

- If m_{H[±]} < m_{top}: search in top pair sample for decay to H[±]
- Consider two search modes based on H[±] decays
 - Tauonic model: $H^{\pm} \rightarrow \tau v$ [high tan β]
 - Leptophobic model: $H^{\pm} \rightarrow c\bar{s}$ [low tan β]
- * Search dilepton, ℓ +jets, ℓ + τ_h top channels
- ♦ Select high-p_T leptons, E_T, and b-tag
- ♦ 95% CL limits on BR(t→H⁺b)
 - DØ I.0 fb⁻¹: PLB 682, 278 (2009)
 - CDF 2.2 fb⁻¹: PRL 103, 101803 (2009)

DØ: NMSSM h→aa Search

* next-to-MSSM Higgs decay search, 4.2 fb⁻¹ data

- h→bb̄ branching ratio greatly reduced and dominantly decays to pair of pseudo-scalar Higgs "a": h→aa
- general LEP search sets limit: M_h > 82 GeV

For masses: $2m_{\mu} < M_a < \sim 2m_{\tau}$ (~3.6 GeV)

*** dominant decay:** $aa \rightarrow \mu\mu\mu\mu$

- signature: two pairs of extremely collinear muons due to low M_a
- $\sigma \times BR$ limits < 5–10 fb (for $M_h = 100 \text{ GeV}$)
- BR($a \rightarrow \mu \mu$) < 7%, assuming BR($h \rightarrow aa$)~1

For masses: $2m_{\tau} < M_a < 2m_b$ (~9 GeV)

- ♦ dominant decay: aa → 2µ2τ
 - signature: one pair of collinear muons and large ∉_T from a→ττ decay
 - σ×BR limits: currently are factor of ≈1-4 larger than expected Higgs production
 PRL, 103 061801 (2009)

First such limits in the parameter space of top quark decays