Searches for High Mass Resonances with the CMS Detector

Toyoko Orimoto CERN

On behalf of the CMS Collaboration

HCP2011 - Paris, France 17 November 2011

Introduction

- Theoretical motivation: new resonances foreseen in many extensions of the SM (extra dimensions, GUT, compositeness, etc...)
- Benchmark models:
 - Diphotons, dileptons, dijets, tī: Z'_{SSM}, GUT-inspired Z'_{ψ}, Randall-Sundrum gravitons, W', axigluons, colorons, excited quarks, E₆ diquark, string resonances
 - Focus on recent analyses with ~1fb⁻¹
 - What's not discussed in this talk will be covered by B. Dahmes tomorrow
- General strategy:
 - Look for excess in data in the high mass region with respect to the SM expectations; no excess is observed → set exclusion limit

Diphoton Resonance

- Signal: RS Gravitons (qq/gg \rightarrow G^{*} \rightarrow gg)
 - For diphotons, branching ratio for spin-2 RS G^{*} is twice that to leptons
 - For RS gravitons, two parameters of interest: M_1 and k/M_{Pl}
- Analysis:
 - Straightforward: look for two isolated, high p_T photons
 - Counting experiment
- Offline: require 2 isolated photons with $p_T > 70$ GeV & $|\eta| < 1.44$

Diphoton Results

• Backgrounds:

- Irreducible SM diphoton production: from MC, scaling by NLO massdependent K-factors
- γJet and dijets, where jets are misidentified as photons: measured in the data using fake rate method

Drococc	Diphoton Invariant Mass Range [TeV]				
Frocess	[0.14, 0.2]	[0.2,0.5]	[0.5,0.8]	[0.8 <i>,</i> ∞)	
Multijet	7 ± 3	9 ± 3	0.1 ± 0.1	0.003 ± 0.001	
γ + jet	53 ± 8	67 ± 10	1.5 ± 0.2	$0.19\ \pm 0.04$	
Diphoton	$185\ \pm 33$	$205\ \pm 37$	$7.6\ \pm 1.4$	1.1 ± 0.2	
Total Backgrounds	$245\ \pm 35$	283 ± 39	9.2 ± 1.4	1.3 ± 0.2	
Observed	263	276	6	1	

Diphoton Limits

- Set 95% CL limits with counting experiment in sliding mass window, with $\rm CL_S$ method

Table 3: Table of 95% CL lower limits on M_1 for given values of the coupling parameter, \tilde{k} .

Ñ	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10	0.11
<i>M</i> ₁ [TeV]	0.77	1.05	1.20	1.31	1.41	1.49	1.57	1.63	1.69	1.74	1.78

Dilepton Resonances

- Signal: Z' and RS G* (qq \rightarrow Z'/G* \rightarrow I+I-; gg \rightarrow G* \rightarrow I+I-)
- Analysis:
 - Generic model-independent shape-based search; no assumptions on the absolute background rate
 - Results are normalized to the Z⁰ peak
- Offline: require 2 isolated leptons with $p_T > 35$ GeV (40 GeV for endcap electrons), opposite-sign for dimuons, + further quality cuts
- Backgrounds:
 - SM Drell-Yan (irreducible): MC normalized to data at the Z peak
 - Prompt leptons (tt, tW, dibosons): eµ Method
 - Jets faking leptons (W+jet, di-jet, QCD): fake rate from jets-enriched data
 - Cosmic muons: Reject with impact parameter and opening angle between the two muons

Dileptons in Data

Source	Number of events				
	Dimuon sample		Dielectron sample		
	(120 - 200) GeV	>200 GeV	(120 - 200) GeV	>200 GeV	
CMS data	5216	1095	3410	809	
Total background	5537 ± 250	1100 ± 48	3375 ± 161	787 ± 67	
Z/γ^*	5131 ± 246	922 ± 44	2992 ± 149	622 ± 62	
tt + other prompt leptons	404 ± 46	178 ± 20	275 ± 20	118 ± 8	
Multi-jet events	3 ± 3	0	107 ± 43	46 ± 18	

Dilepton Limits

- Signal and background shape parameters from MC
- Limit on ratio wrt Z

$$R_{\sigma} = \frac{\sigma(pp \to Z' + X \to \ell\ell + X)}{\sigma(pp \to Z + X \to \ell\ell + X)}$$

 Use different methods: CL_{SB}, Feldman-Cousins, and a <u>fully</u> <u>Bayesian technique</u>

Model	$\mu^+\mu^-$ +ee (GeV)
Z' _{SSM}	1940
Ζ' _ψ	1620
G*, k/M _{PI} =0.05	1450
G*, k/M _{Pl} =0.1	1780

Dijet Resonances

- Signal: String resonance, excited quarks, axigluons, colorons, E₆ diquark, Z', W', RS gravitons
- Backgrounds:
 - QCD multijets (smoothly falling distribution predicted by SM)
- Analysis:
 - General model independent shapebased approach for 3 types of narrow resonances: qq, qg, gg
 - Differences mainly from FSR
- Offline: require 2 leading jets with $|\eta|$ <2.5 and $|\Delta\eta|{<}1.3$ and dijet mass > 838 GeV

• Jet Algorithm:

- Combines Particle Flow jets with the anti- k_T (R=0.5) into "wide jets"
- Radiation recovery: collect more FSR and improve mass resolution

Dijet Results

$$\frac{d\sigma}{dm} = \frac{P_0 (1 - m/\sqrt{s})^{P_1}}{(m/\sqrt{s})^{P_2 + P_3 \ln(m/\sqrt{s})}}$$

- Systematic Uncertainties:
 - Jet Energy Scale: 2.2%
 - Jet Energy Resolution: 10%

Dijet Resonance Search Limits

- Limits are set using Bayesian approach with constant prior and binned likelihood
- Benchmark models written as function of qq, qg, gg
- The use of wide-jets improves the limits by 20% for gg, 10% for qg, and 5% for qq

Model	Excluded Mass (TeV)			
	Observed	Expected		
String Resonances	4.00	3.90		
E ₆ Diquarks	3.52	3.28		
Excited Quarks	2.49	2.68		
Axigluons/Colorons	2.47	2.66		
W' Bosons	1.51	1.40		

tt Resonances: Semileptonic Decay

- New bosons with enhanced coupling to top appear in many SM extensions (dynamical symmetry breaking, little higgs, extra-dim, etc)
- Signal: Z' $(qq \rightarrow Z' \rightarrow tt \rightarrow W^+b W^-b \rightarrow (qq'b)(\mu\nu b)$ (or c.c.)
 - BR(t \rightarrow Wb) \approx 0.99; tt semileptonic (e, μ) BR \approx 0.3
 - For benchmark Z', assume width is 1% of m_Z
 - Focus here on the updated μ analysis with 1.1 fb⁻¹
- Backgrounds:
 - SM tt, W/Z + jets, single top, QCD multijets
- Analysis:
 - Search focuses on using tt with decay products narrowly collimated along the direction of the top
 - Assignment of jets to top quarks during mass reconstruction is based on topological criteria favoring back-to-back highly boosted top pairs

Semileptonic tt : Selection

- Jets:
 - For high mass tt, the decay products of the hadronic decaying top can have small opening angles in the detector frame
 - Instead, rather than 4 jets: require two Particle Flow jets, p_>50 GeV & $|\eta|$ <2.4 with leading jet p_>250 GeV
 - Jet Algorithm: Anti- k_T with R=0.5
- Muons:
 - p_T>35 GeV & |η|<2.1
 - Likewise, high top p_T results in low ΔR between μ and b, making it non-optimal to require the muon to be well-isolated
 - 2D cut: $\Delta R > 0.5$ or $p_{T,rel} > 25$ GeV to fight QCD multijets
- Lepton cut: veto events with additional μ /e to fight tt dilepton and Z
- $H_{T,lep} > 150$ GeV: scalar sum of muon p_T and MET

Semileptonic tī: Limits

- Systematic Uncertainties:
 - Jet Energy Scale 2-3%
 - Jet Energy Res 10-20%

ProcessExpected limit $\pm 1\sigma$ band [pb]Observed limit [pb]Z', M = 1 TeV/ c^2 $2.7^{+1.5}_{-0.9}$ 2.7Z', M = 1.5 TeV/ c^2 $0.64^{+0.34}_{-0.21}$ 0.70Z', M = 2 TeV/ c^2 $0.23^{+0.12}_{-0.07}$ 0.22Z', M = 3 TeV/ c^2 $0.10^{+0.04}_{-0.03}$ 0.11

tt Resonances: All Hadronic Decay

- Signal: Z' $(qq \rightarrow Z' \rightarrow tt \rightarrow Wb Wb \rightarrow (qq'b)(qq'b))$
 - Motivations similar to previous analysis EXO-11-055, but BR 46%
 - Again, the benchmark is a generic Z' with narrow width (1%)
- Backgrounds:
 - QCD multijet production (dominant, use data-driven methods)
 - SM tt production (significantly smaller, estimated from MC)
- Analysis:
 - Focus on > 1 TeV
 - Exploits highly-boosted nature of top quarks from the high mass resonances (decay products falling inside single jet)
- Jet tagging algorithms:
 - Top tagging: identify merged top jets by analyzing their substructure
 - Jet pruning: Performs less well, but more generic for arbitrary topologies

Hadronic tī: Categories

- Events are classified into categories, depending on boost
- Event is divided into hemispheres, so each hemisphere contains the final products of each top
 - High boost: all 3 jets in one hemisphere are merged into one "top jet"
 - 2. Moderate boost: only 2 out of 3 of the jets are merged

- Search in two categories:
 - "Type 1+1": two highly boosted jets
 - "Type 1+2": three-jet event

Type 1+1 tī mass (GeV/c²)

- High Mass Search: Type 1+1 events
- Intermediate Mass Search: Type 1+2 events
- Continuum tt contribution is small and is estimated from MC
- QCD estimated with top tagging mistag rate measured from data

Hadronic tt: Results

Hadronic tt: Results

- Systematic uncertainties:
 - Subjet eff scale factor (28%)
 - Jet energy scale (2-19%)
 - Trigger (13-20%)
 - Mistag (1-25%)
- CMS Preliminary, 886 pb⁻¹ at√s = 7 TeV 10² Jpper Limit $\sigma_{Z'} \times BR(Z' \rightarrow t\bar{t})$ (pb) Combined type 1+1 & 1+2 Observed (95% CL) Expected (95% CL) \pm 1 σ Expected 10 $\pm 2\sigma$ Expected KK Gluon, Agashe et al Topcolor Z', 3.0% width, Harris et al Topcolor Z', 1.2% width, Harris et al **10**⁻¹ 1.5 2.5 2 tt Invariant Mass (TeV/c²)
- Limits:
 - Counting Experiment
 - Set sub-pb limits on σ x BR for m_{7} >1.1 TeV
 - Exclude KK gluon model with 1.0<m<1.5 TeV

EXO-11-006

Toyoko Orimoto, CERN

3

Conclusions

Analysis	Dataset (fb⁻¹)	Signal	95% CL Limits (TeV)
Diphoton	1.1	RS G* k/MPI=0.01, 0.05, 0.1	0.77, 1.41, 1.74
Dilepton	1.1	RS G* k/MPI=0.05, 0.1 Z' _{SSM} Z' $_{\Psi}$	1.45, 1.78 1.94 1.62
Dijet	1.0	String Resonances E6 Diquarks Excited Quarks Axigluons/Colorons W'	4 3.52 2.49 2.47 1.51
tī semileptonic	1.1	Topcolor Z' with width 3% $\sigma(pp \rightarrow Z' \rightarrow tt) < 1 (0.2) \text{ pb}$ for m _{Z'} >1.35 (2.3) TeV	Exclude 0.805 <m<sub>Z'<0.935 and 0.960<m<sub>Z'<1.060</m<sub></m<sub>
tī all hadronic	0.886	RS KK gluon $\sigma(pp \rightarrow Z' \rightarrow tt) < 1pb$ for $m_{Z'}>1.1$ TeV	Excluded for 1.0 <m<1.5< td=""></m<1.5<>

Toyoko Orimoto, CERN