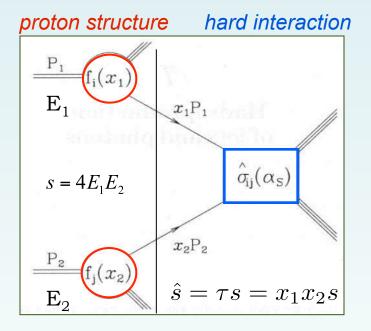


Recent results from HERA and their impact for LHC

Katerina Lipka, DESY for the H1 and ZEUS Collaborations


Hadron Collider Physics Symposium 2011

Motivation: precision of the proton structure

Cross sections of processes in proton-(anti)proton collisions

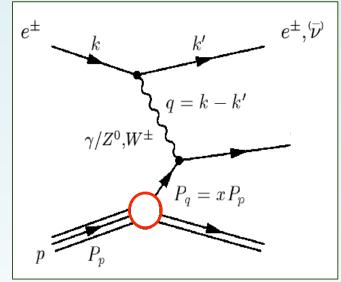
Proton Structure described via probability for a parton *i* to carry the fraction *x* of proton momentum (Parton Distribution Functions) $f_i(x,\mu^2)$

Factorization: $PDF \otimes$ hard sub-process ME

$$\sigma(s) = \sum_{i,j} \int_{\tau_0}^1 \frac{d\tau}{\tau} \cdot \frac{dL_{ij}(\mu_F^2)}{d\tau} \cdot \hat{s} \cdot \hat{\sigma}_{ij}$$

calculable in pQCD

$$\tau \cdot \frac{dL_{ij}}{d\tau} \propto \int_0^1 dx_1 dx_2 (x_1 f_i(x_1, \mu_F^2) \cdot x_2 f_j(x_2, \mu_F^2)) + (1 \leftrightarrow 2)\delta(\tau - x_1 x_2)$$

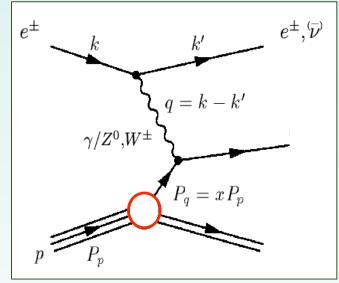

Precision of PDFs essential

1

Proton PDFs and structure functions in DIS

PDFs extracted from structure function measurements in Deep Inelastic Scattering

electron-proton DIS


 $\begin{array}{l} \gamma, Z \; \text{Exchange: Neutral Current } ep \rightarrow e \; X \\ \frac{d^2 \sigma^{e^{\pm} P}}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} [Y_+ F_2 \mp Y_- xF_3 - y^2 F_L] \\ LO: \; F_2 \propto \sum_i (q_i(x) + \bar{q}_i(x)) \; \text{ dominant contribution} \\ LO: \; F_3 \propto \sum_i (q_i(x) - \bar{q}_i(x)) \; \; \gamma/Z \; \text{interference} \\ NLO: \; F_L \propto x \cdot \alpha_S \cdot g(x,Q^2) \; \text{ contribution from gluon} \end{array}$

 $Q^2 = -q^2$ boson virtuality $x = -q^2/2p \cdot q$ Bjorken scaling variable $s = (k+p)^2$ center of mass energyytransferred energy fraction $Y_{\pm} = 1 \pm (1-y)^2$

Proton PDFs and structure functions in DIS

PDFs extracted from structure function measurements in Deep Inelastic Scattering

electron-proton DIS

 $\begin{array}{l} \gamma, Z \; \text{Exchange: Neutral Current } ep \rightarrow e \; X \\ \frac{d^2 \sigma^{e^{\pm} P}}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} [Y_+ F_2 \mp Y_- xF_3 - y^2 F_L] \\ LO: \; F_2 \propto \sum_i (q_i(x) + \bar{q}_i(x)) \; \text{ dominant contribution} \\ LO: \; F_3 \propto \sum_i (q_i(x) - \bar{q}_i(x)) \; \; \gamma/Z \; \text{interference} \\ NLO: \; F_L \propto x \cdot \alpha_S \cdot g(x, Q^2) \; \; \text{contribution from gluon} \end{array}$

 W^{\pm} Exchange: Charged Current $ep \rightarrow v X$

$$Q^2 = -q^2$$
 boson virtuality
 $x = -q^2/2p \cdot q$ Bjorken scaling variable
 $s = (k+p)^2$ center of mass energy
 y transferred energy fraction
 $Y_{\pm} = 1 \pm (1-y)^2$

 $\sigma_{CC}^{e^+p} \propto x\{(\bar{u}+\bar{c})+(1-y)^2(d+s)\}$ $\sigma_{CC}^{e^-p} \propto x\{(u+c)+(1-y)^2(\bar{d}+\bar{s})\}$

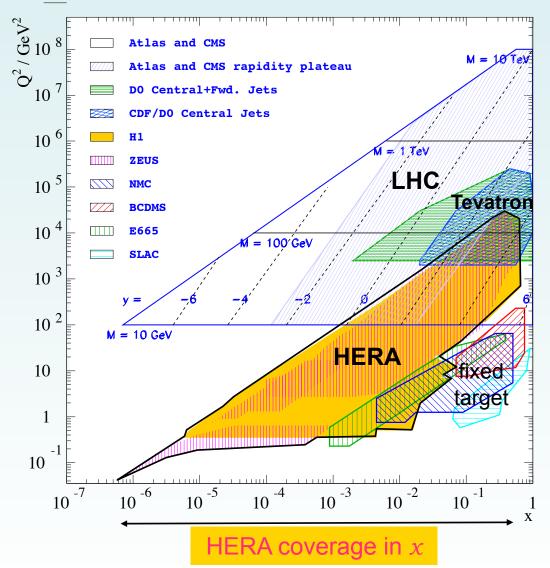
sensitive to individual quark flavours

Determination of parton density functions

Structure function factorization: for the exchange of Boson $V(\gamma, Z, W^{\pm})$

$$F_2^V(x,Q^2) = \sum_{i=q,\bar{q},g} \int_x^1 dz \times C_2^{V,i}(\frac{x}{z},Q^2,\mu_F,\mu_R,\alpha_S) \times f_i(z,\mu_F,\mu_R)$$

from measured cross sections


calculable in pQCD

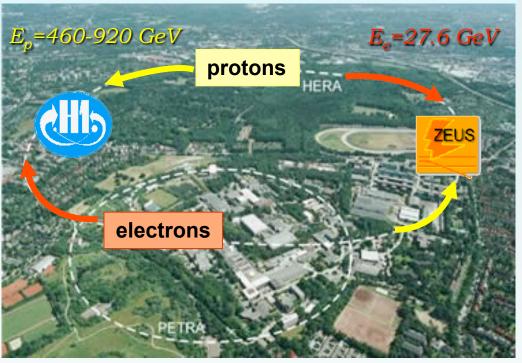
PDF

x-dependence of PDFs is not calculable in perturbative QCD:

- > parameterize at a starting scale $Q_0^2 : f(x) = Ax^B(1-x)^C(1+Dx+Ex^2)$
- \triangleright evolve these PDFs using DGLAP equations to $Q^2 > Q^2_0$
- construct structure functions from PDFs and coefficient functions: predictions for every data point in (x, Q^2) – plane
- $\succ \chi^2$ fit to the experimental data

Experiments sensitive to PDFs

PDFs obtained from data of fixed target, HERA, Tevatron


HERA measurements:

covers most of the (x, Q^2) plane, best constraints at low, medium x

backbone of all available PDFs

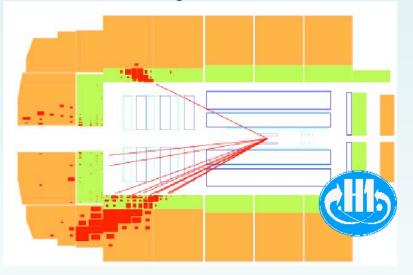
Deep inelastic scattering at HERA

World-only *ep* collider

- HERA I : 1992-2000
- HERA II: 2003-2007
- collider experiments

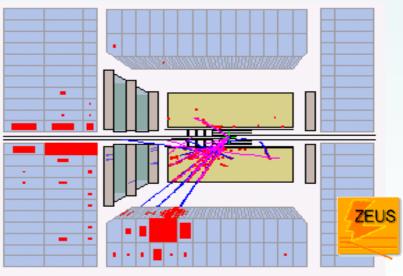
H1 & ZEUS, $\sqrt{s_{max}}$ = 318 GeV

integrated Luminosity

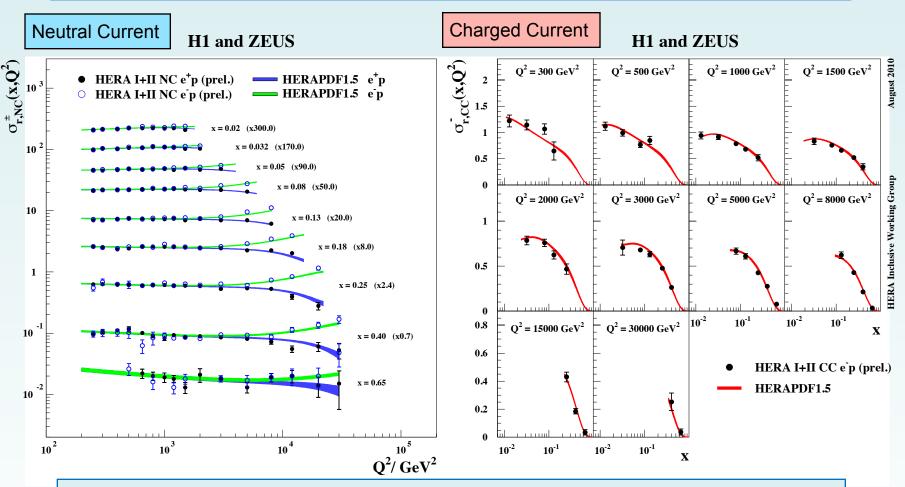

~0.5 fb-1/ experiment

HERA switched off June 2007, analyses ongoing on the way to final precision H1 and ZEUS combine experimental data accounting for systematic correlations HERA performs the QCD analysis of (semi) inclusive DIS data (HERAPDF) H1 and ZEUS collaborations provide/support the PDF Fitting Tool (HERAFitter)

Neutral and charged current DIS at HERA

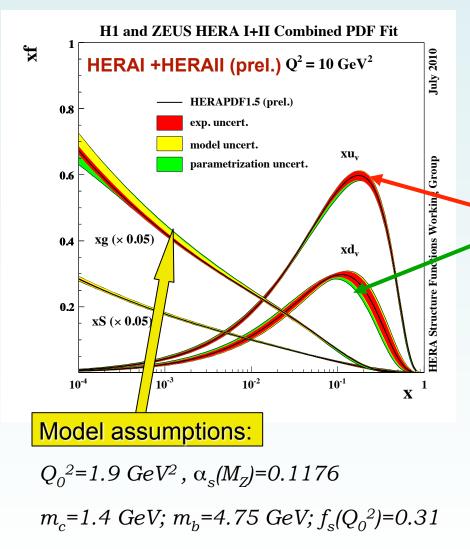

 γ , Z: Neutral Current $ep \rightarrow e X$

Isolated energetic scattered e[±]



 W^{\pm} : Charged Current $ep \rightarrow v X$

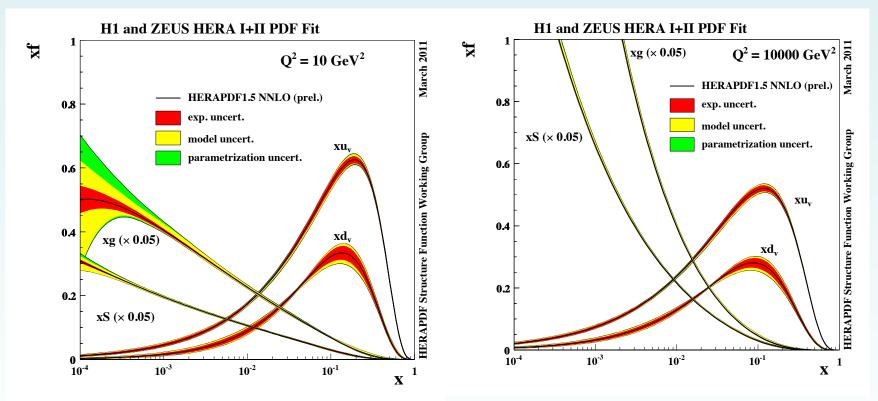
Large missing energy due to $\boldsymbol{\nu}$


Recent results on HERA DIS Cross Sections

H1 and ZEUS measurements are combined accounting for correlations Impressive precision up to high Q^2 and high xQCD analysis of combined HERA NC and CC data: **HERAPDF**

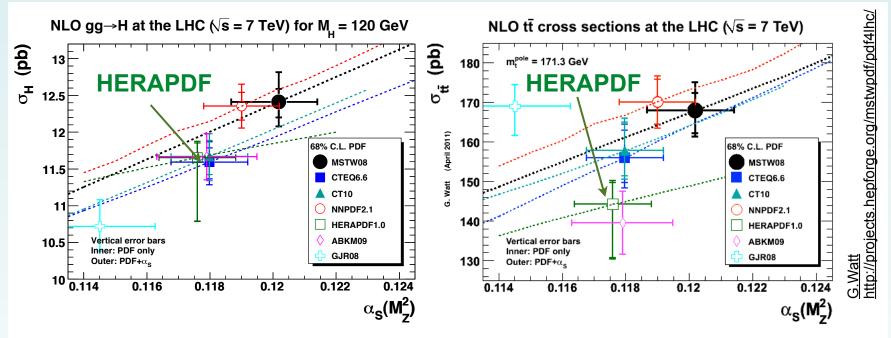
HERA parton density functions

HERAPDF1.5: most precise DIS data, recommended PDF (HERA/PDF4LHC)



DGLAP fit at NLO Heavy quarks: massive Variable Flavour Number Scheme Scales: $\mu_r = \mu_f = Q^2$ Experimentally very precise Parameterization at starting scale: $xg(x) = A_{a}x^{B_{g}}(1-x)^{C_{g}}$ $xu_{v}(x) = A_{u_{v}}x^{B_{u_{v}}}(1-x)^{C_{u_{v}}}(1+E_{u}x^{2})$ $xd_{v}(x) = A_{d} x^{B_{d_{v}}} (1 - x)^{C_{d_{v}}}$ $x\overline{U}(x) = A_{\overline{U}} x^{B_{\overline{U}}} (1-x)^{C_{\overline{U}}}$ $x\overline{D}(x) = A_{\overline{D}}x^{B_{\overline{D}}}(1-x)^{C_{\overline{D}}}$ 9

HERAPDF1.5 NNLO


HERAPDF1.5NNLO is based on HERA I + II inclusive DIS data

uses more flexible parametrisation then NLO

HERAPDF1.5NNLO: eigenvectors available in LHAPDF allows for many studies of parametrization and model parameters

HERAPDF in benchmarking effort

Dominant uncertainty on HERAPDF : parameterisation, model

Differences between the PDF groups:

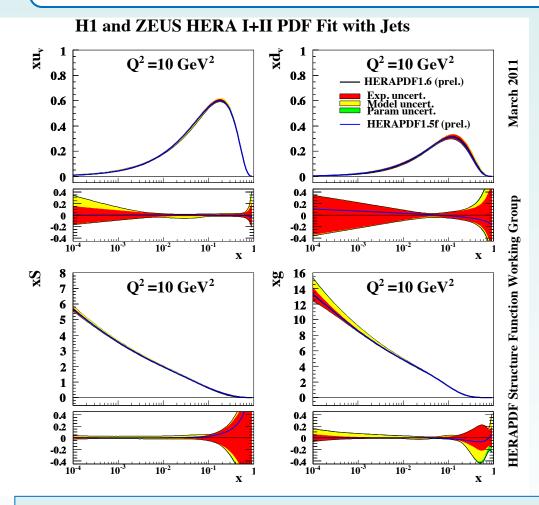
- data used in the fit and estimation of uncertainties
- choice of α_s and running of strong coupling
- different treatment of heavy quarks

HERAPDFs and HERAPDF approach

HERAPDF sets are based **only** on combined H1 and ZEUS data proper correlations of the systematic uncertainties: use $\Delta \chi^2 = 1$ criterion for proper statistical uncertainties; no need for nuclear corrections

HERAPDF tools allow for usage of different Heavy Flavour schemes

- close collaboration with theory groups MSTW, CTEQ, ABKM
- test and tune different pheomenological approaches


PDF fit is performed in line with the analysis of experimental data

- most precise inclusive DIS cross sections in the broad kinematic range
- semi-inclusive data provide further constraints
- test assumptions on the PDF parametrization and model parameters

examples:

- choice of $\alpha_{\rm S}$ and running of strong coupling
- different treatment of heavy quarks

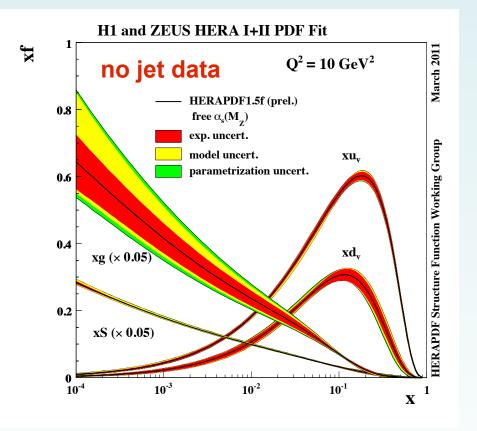
PDF fits using HERA jet data: fixed α_s

Inclusive DIS data: combined HERAI+HERAII

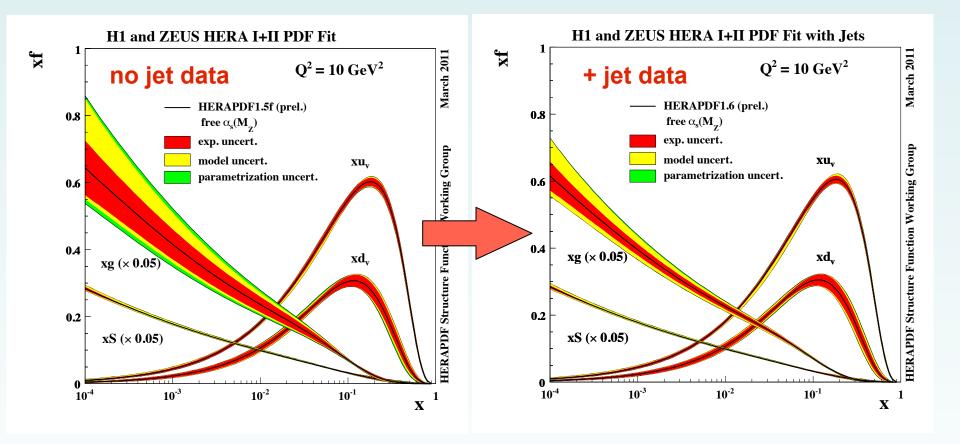
Jet data:

H1 high Q² , *EPJ* C**65** (2010) low Q², *EPJ* C**67** (2010)

ZEUS incl. jets *PLB547* (2002) incl.+2jets *NP B765* (2007)

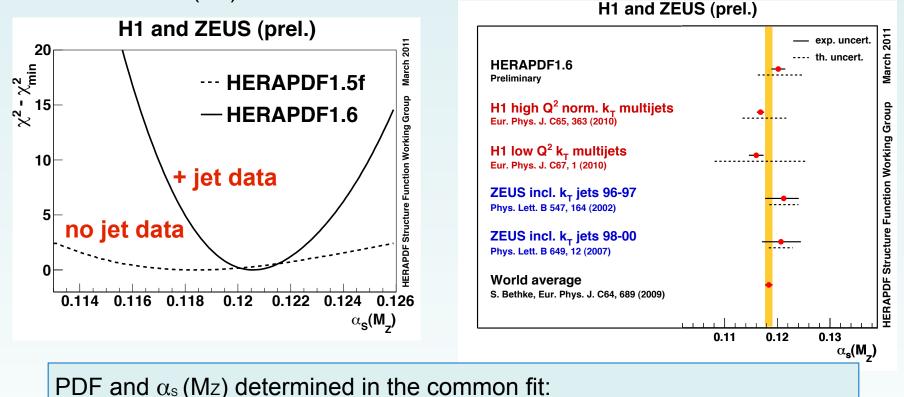

PDF Fit:

- flexible parametrisation


- $\alpha_s(M_Z)$ fixed

Inclusion of jet data into the PDF fit using fixed α_s does not have large impact

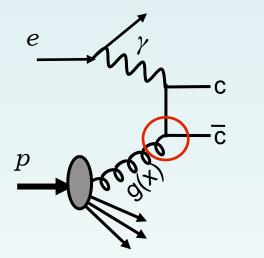
PDF fits with free α_s (Mz)


PDF fits with free α_s (Mz)

Inclusion of jet data into the PDF fit decouples the gluon and αs (Mz)

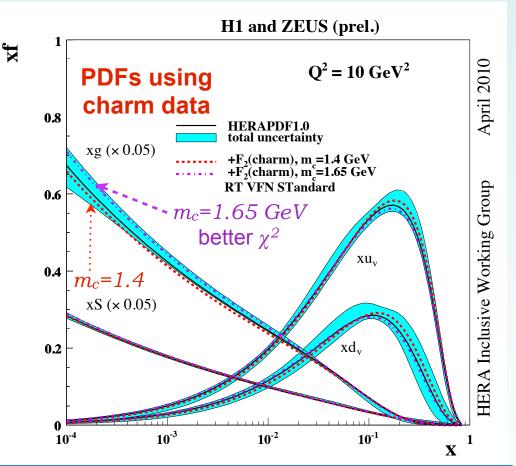
α_s (Mz) from PDF fits including HERA jet data

Scan of the αs (Mz) in the PDF fit



 α_{s} (M_z)= 0.1202 ± 0.0013_{exp} ± 0.0007_{model/param} ± 0.0012_{had}+0.0045_{scale}

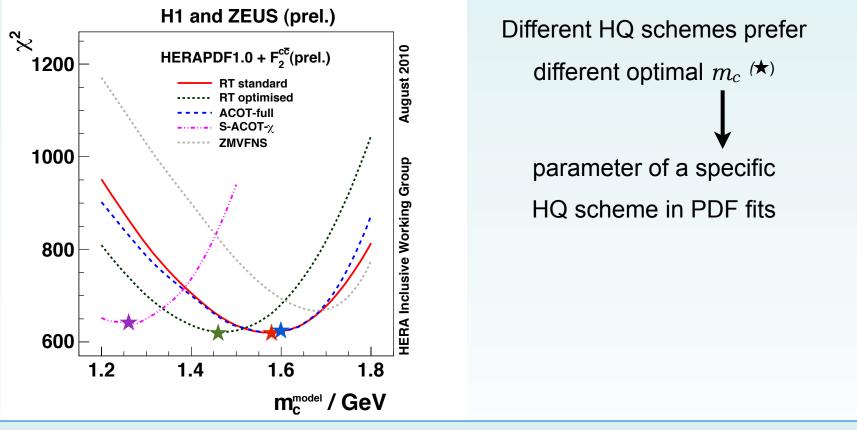
From including the Jet data in the PDF fit: determine gluon and α_s (M_z)


Charm data in the PDF fit

Charm production probes gluon directly. Do charm data influence the gluon?

Heavy quark treatment in PDFs is quite some issue

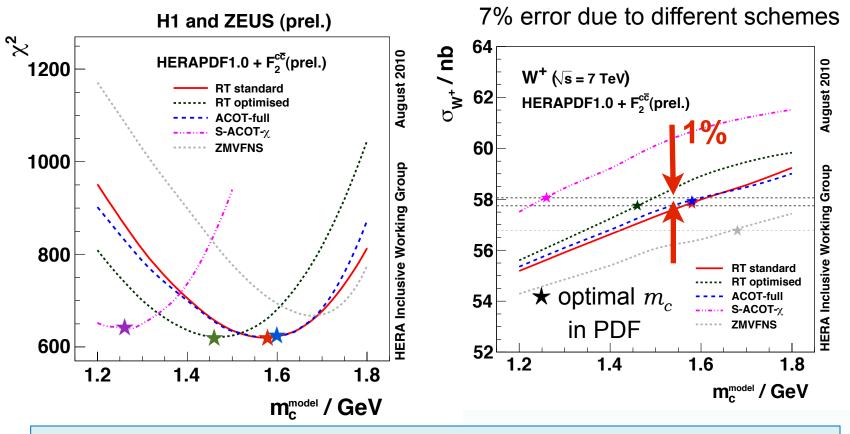
different schemes exist, (treatment of mass terms in perturbative calculation) assume different m_c



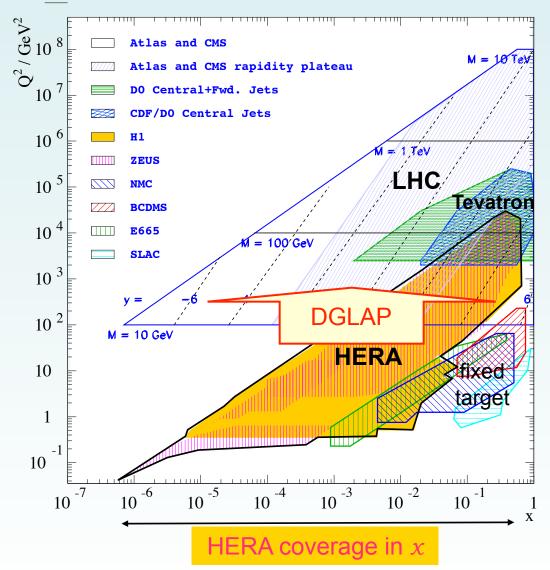
PDFs and quality of PDF fit using charm data is sensitive to the value of m_c

Charm data in the PDF fit

Study the sensitivity of the PDF fit to the value of m_c


 \blacktriangleright pin down the value of m_c for different heavy quark schemes

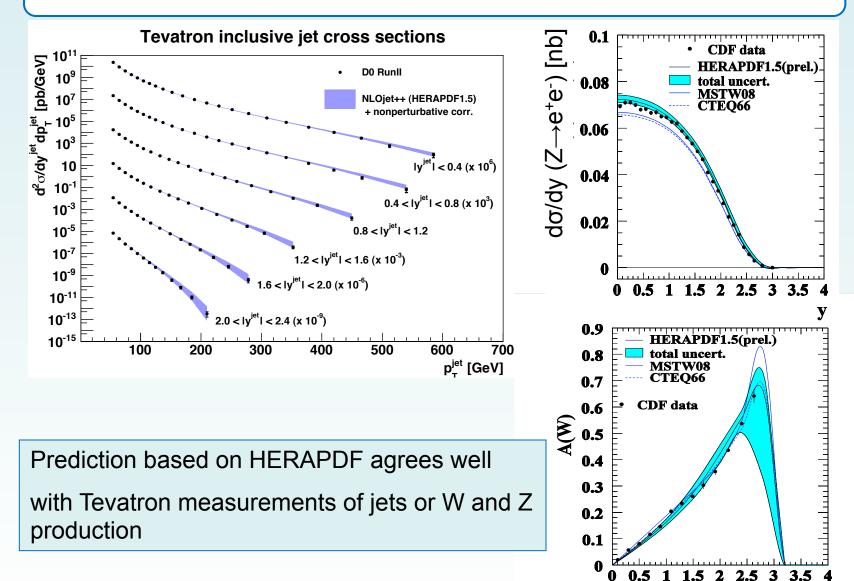
From including the charm data in the PDF fit we do learn about m_c^{model} in the fit


Value of m_c in PDF important for W/Z at LHC

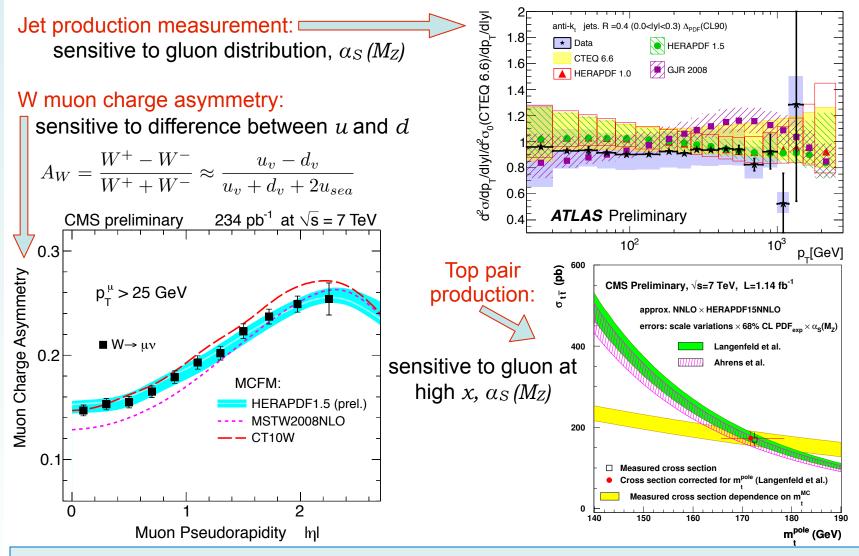
Dominant error on predictions for W and Z cross sections due to m_c in PDF different heavy flavour schemes use their preferred assumptions:

Uncertainty on σ_W prediction due to HF treatment in PDFs reduced to 1 %

PDFs from HERA to Tevatron and LHC


PDFs:

intrinsic property of nucleon i.e process independent


From HERA to kinematics of Tevatron, LHC:

evolution in Q^2 via DGLAP

HERAPDF and measurements at Tevatron

HERAPDF and measurements at the LHC

HERAPDF describes well the results; LHC data will put further PDF constraints

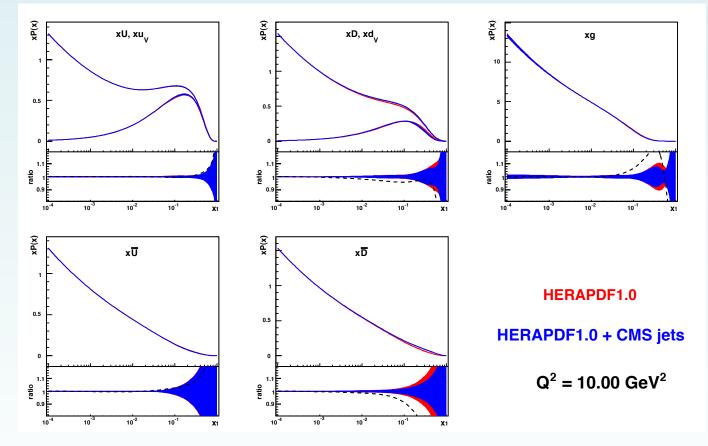
Tool for PDF fits: HERAFitter

Developed/supported by HERA experts, follows HERAPDF approach:

- ✓ experimentalists perform QCD analysis of the PDF-sensitive data and tune/test phenomenology
- \checkmark very close collaboration with theory groups
- ✓ implies possibility to use different available heavy flavour schemes

Open source code, available on HEPForge: http://projects.hepforge.org/herafitter/

Н	HERAFitter 🗘 💿 hosted by CEDAR HepForge						
	. Heme	HERAFitter					
	HomeSubversionTrackerWiki	HERAFitter is a set of PDF fitting tools jointly developed by the H1 and ZEUS collaborations for determination of the parton density functions. The HERAFitter codes were used to obtain the HERAPDF sets.					
		The current distribution contains a BETA-version of the first code released within the HERAFitter package, the H1FITTER program.					


β -release includes

DIS and some semi-inclusive data + examples how to include new data different statistical methods of uncertainty treatment, etc..

Already used in ATLAS and CMS

Tool for PDF fits: HERAFitter

CMS jets included in the PDF fit (arXiv:1106.0208) no correlations published yet

Many results are in the approval procedure, correlations has to be studied. Expect soon more constraints from Drell-Yan, Jets, top pair production...

- > Understanding of the LHC data demands precise PDFs HERA DIS data provide highest precision at low and medium x
- Heavy quarks and α_S: quite some issue in QCD analyses HERA charm and jet data provide constraints in PDF fits Example: PDF uncertainties on predictions for W and Z at the LHC More to learn using the LHC data
- HERAFitter tool developed to produce PDF fits, taking lessons learned at HERA with strong support from theorists
 - **Developers and Fitters are welcome**

Combination Procedure

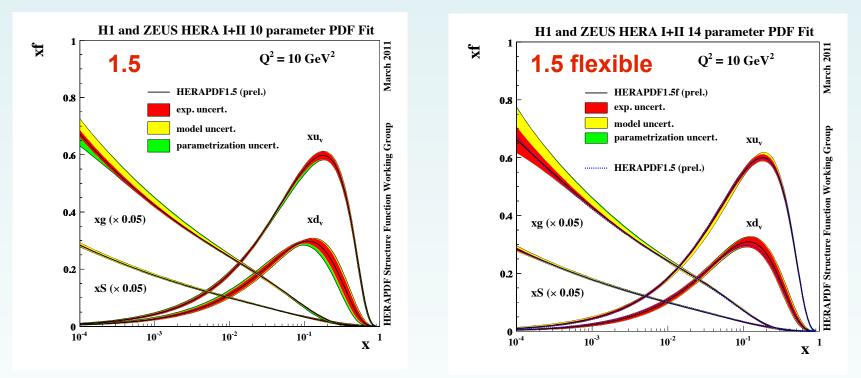
Minimized value:

$$\chi^{2}(\vec{m},\vec{b}) = \sum_{i} \frac{\left(m^{i} - \sum_{j} \gamma_{j}^{i} m^{i} b_{j} - \mu^{i}\right)}{\left(\delta_{i,stat} \mu^{i}\right)^{2} + \left(\delta_{i,unc} m^{i}\right)^{2}} + \sum_{j} b_{j}^{2}$$

 $\boldsymbol{\mu}^i$ measured value at point i

 δ_i statistical, uncorrelated systematic error

 γ_i^j – correlated systematic error


 b_i – shift of correlated systematic error sources

 m^i – true value (corresponds to min χ^2)

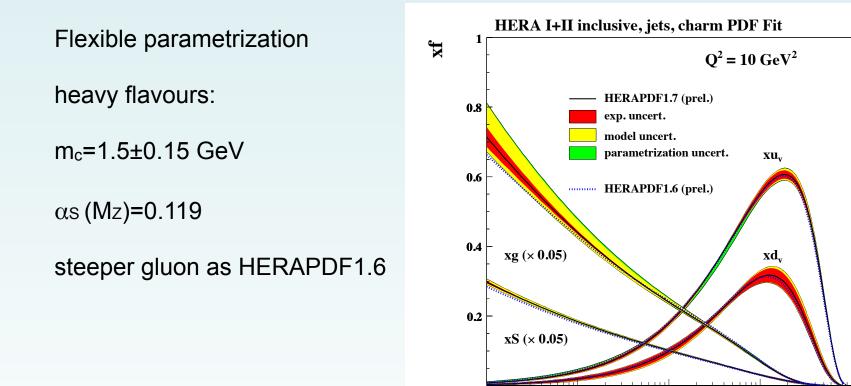
Measurements performed sometimes in slightly different range of (x, Q^2) swimming to the common (x, Q^2) grid via NLO QCD in massive scheme

HERAPDF: Fit Improvements

HERAPDF1.5f: 14-parameter fit gluon more flexible at low-x

Small difference in total uncertainty

→ swap between parametrisation and experimental uncertainties


HERAPDF1.5f:

$$\begin{aligned} xg(x) &= A_g x^{B_g} \cdot (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g} \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} \cdot (1-x)^{C_{u_v}} \cdot (1+D_{u_v} x + E_{u_v} x^2) \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} \cdot (1-x)^{C_{d_v}} \\ x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} \cdot (1-x)^{C_{\bar{U}}} \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} \cdot (1-x)^{C_{\bar{D}}} \end{aligned}$$

 A_g, A_{u_v}, A_{d_v} are constrained by the sum rules. $B_{\bar{U}} = B_{\bar{D}}$ $C'_g = 25, A_{\bar{U}} = A_{\bar{D}}(1 - f_s)$

HERAPDF1.5 (10 parameter fit) $A'_{g} = B'_{g} = 0, B_{d_{v}} = B_{u_{v}}$ $D_{u_{v}} = 0$

HERAPDF1.7: DIS+ low energy+jets+charm

Including the jet and the charm data: decouple the gluon from α_{S} and m_{c}

10⁻⁴

10⁻³

10⁻²

10⁻¹

June 2011

HERAPDF Structure Function Working Group

 \mathbf{x}^{1}

PDF Group Landscape

MSTW

– 28 parameters, 20 eigenvectors; inflated $\Delta \chi^2$ to 5-20 for eigenvectors (data incomparability)

CTEQ

– 26 eigenvectors; inflated $\Delta \chi^2$ to ~40 for eigenvectors

NNPDFs

– minimises χ^2 and expand about the best fit

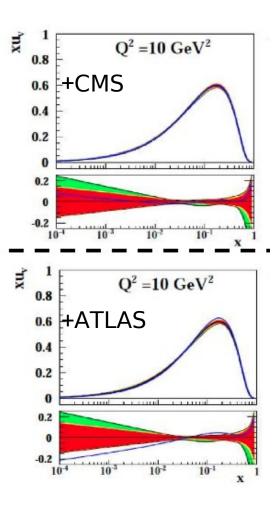
HERAPDF

- 10 eigenvectors (now more flexibility added to PDFs); $\Delta\chi^2 = 1$, model and parametrisation uncertainties

AB(K)M

– 21 parameters, $\Delta \chi^2 = 1$

GJR


– 20 parameters, use $\Delta \chi^2$ to ~20, strong constrains on input form of PDFs

W Asymmetry data in the fits

Early LHC data are described fairly well

→ if these data are fit, the PDFs lie within the HERAPDF1.5 error band

> ATLAS and CMS pull u valence quark in opposite directions

Heavy Quarks and PDF Fits

Factorization:
$$F_2^V(x, Q^2) = \sum_{i=1, \bar{q}, g} \int_x^1 dz \times C_2^{V,i}(\frac{x}{z}, Q^2, \mu_F, \mu_R, \alpha_S) \times f_i(z, \mu_F, \mu_R)$$

i - number of active flavours in the proton: defines the factorization (HQ) scheme

• *i* fixed : Fixed Flavour Number Scheme (FFNS)

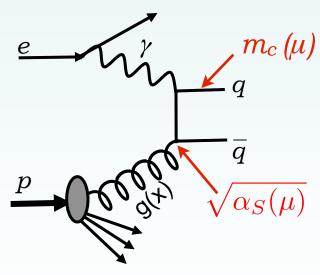
only light flavours in the proton: i = 3 (4)

c- (b-) quarks massive, produced in boson-gluon fusion

 $Q^2 \gg m_{HQ}^2$: can be less precise, NLO coefficients contain terms ~ $ln(\frac{Q}{m_{HQ}})$

- *i* variable: Variable Flavour Number Scheme (VFNS)
- Zero Mass VFNS: all flavours massless. Breaks down at $Q^2 \sim m_{HO}^2$
- Generalized Mass VFNS: different implementations provided by PDF groups smooth matching with FFNS for $Q^2 \rightarrow m_{HQ}^2$ must be assured

QCD analysis of the proton structure: treatment of heavy quarks essential


Heavy Quark Mass Definition in PDFs

Usually HQ coefficient functions use a pole mass definition

BUT: pole mass defined for free quarks Corrections due to loop integrals receive large contributions ~ $O(\Lambda_{QCD})$

> large higher order corrections bad convergence of perturbative series

Another way of defining quark mass: via renormalization

q

running coupling

running mass

Heavy Quark Mass Meaning/Value in PDFs

Massive HQ coefficient functions are calculated at NLO using pole mass Smith. et al NPB 395,162 (1993)

Used by the global fit groups: MSTW, CTEQ, ABKM, GJR, HERAPDF

ZMVFNS: m_{HQ} defines a threshold at which HQ appears as an active flavour GMVFNS: m_{HQ} is also used as a parameter at which FFNS turns into VFNS

PDF group	m_c	m_b H	Q scheme
MSTW	1.4	/ 4.75	GMVFNS
CTEQ	1.3	/ 4.5	GMVFNS
JR	1.3	/ 4.2	FFNS
ABKM	1.5	/ 4.5	FFNS
HERAPDF	1.4 ^{-0.05} +0.25	/ 4.75	GMVFNS

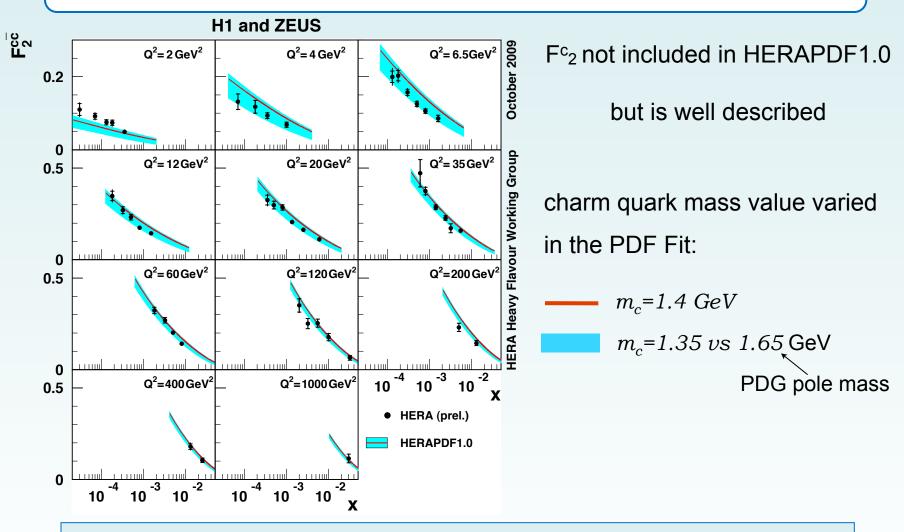
PDG values: 1.6

1.66±0.18 / 4.79

PDF fits assume pole mass definition for heavy quarks Values of m_c as used by most PDF groups too low wrt. PDG

Heavy Quark Production at HERA

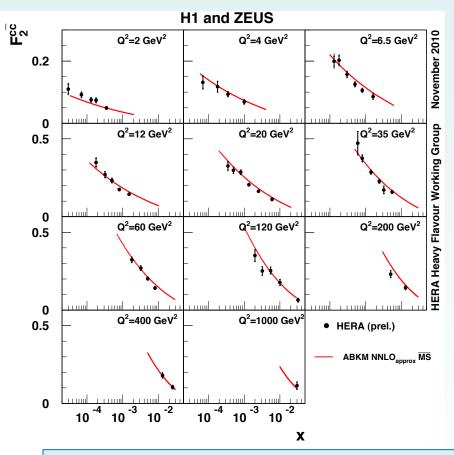
Heavy quarks in ep scattering produced in boson-gluon fusion



 \mathbf{M} HQ contributions to the proton structure function F_2 : (e.g. charm)

$$\sigma^{cc} \propto F_2^{cc}(x,Q^2) - \frac{y^2}{1 + (1 - y)^2} F_L^{cc}(x,Q^2)$$

Direct test of HQ schemes in PDF fits


Charm at HERA: Test Choice of m_c in PDF

PDFs obtained from inclusive data sensitive to the choice of m_c

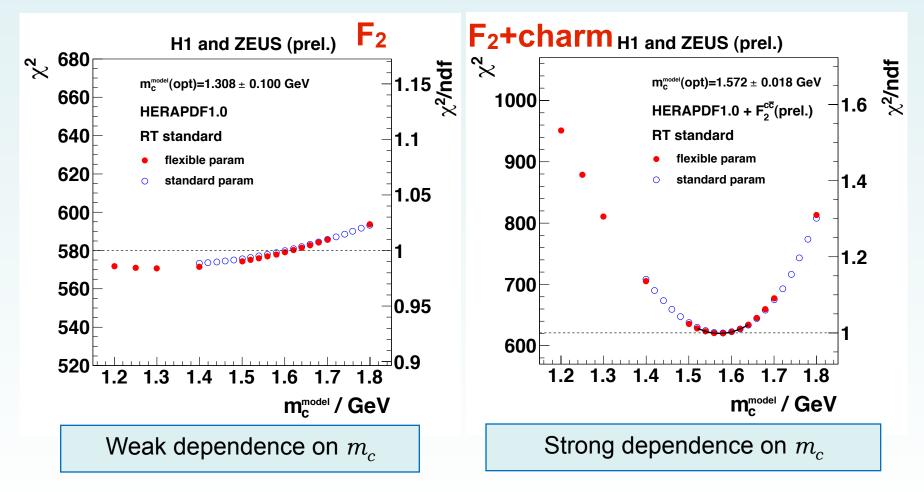
What is the Meaning of m_c in PDF Fits?

Recent theory developments: (ABKM group, DESY, *arXiv:1011.5790*) HQ coefficient functions provided in $\overline{\text{MS}}$ scheme using running m_{HQ}

Perturbative series converge better

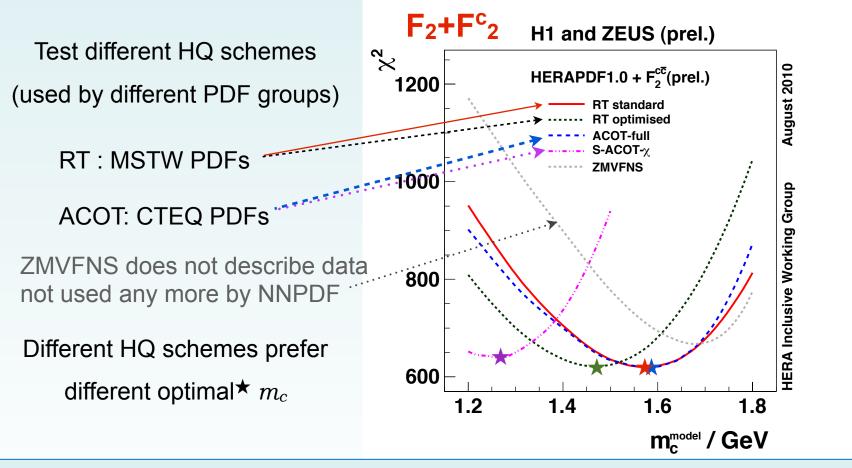
Consistent treatment of HQ in PDF fits

 $m_c(m_c)$ determined using DIS data


From including the charm data in the PDF fit we can learn about m_c (m_c)

Charm Mass as a Model Parameter in PDF

Study the sensitivity of the PDF fit to the value of m_c


PDF fit to inclusive DIS

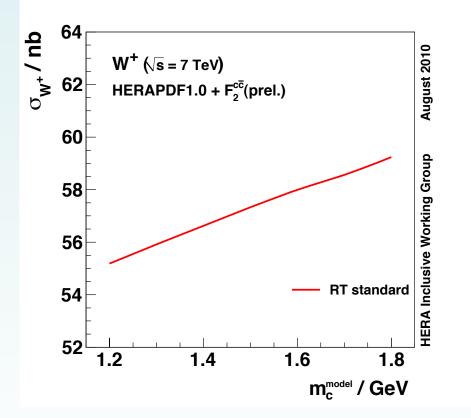
PDF fit to inclusive DIS + charm data

Different HQ Schemes in PDFs

Value of m_c : how different for various HQ schemes in PDF Fits?

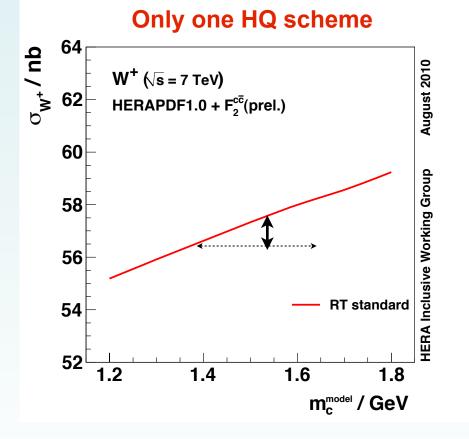
Inclusion of charm data into the PDF fit **decouples** the gluon and m_c

Heavy Quarks in PDFs and W/Z at LHC


Prediction of W[±] cross section @ LHC: dominant uncertainty due to PDF

 m_c variation in PDF: significant uncertainty on W@LHC in central region

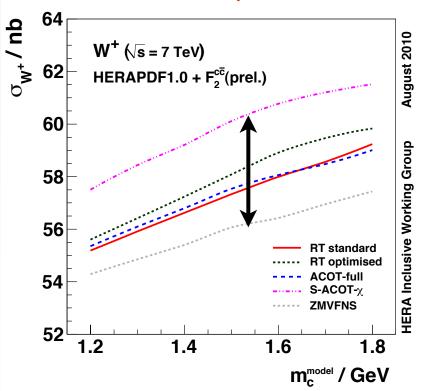
Charm at HERA and W/Z at LHC


Vary the charm mass in the PDF. Use resulting PDFs for LHC predictions

Larger $m_c \rightarrow$ more gluons, less charm \rightarrow more light quarks \rightarrow larger σ_W

Charm at HERA and W/Z at LHC

Vary the charm mass in the PDF. Use resulting PDFs for LHC predictions


 m_c variation in PDF

 $1.4 < m_c < 1.65 \text{ GeV}$

3% uncertainty on W prediction

Charm at HERA and W/Z at LHC

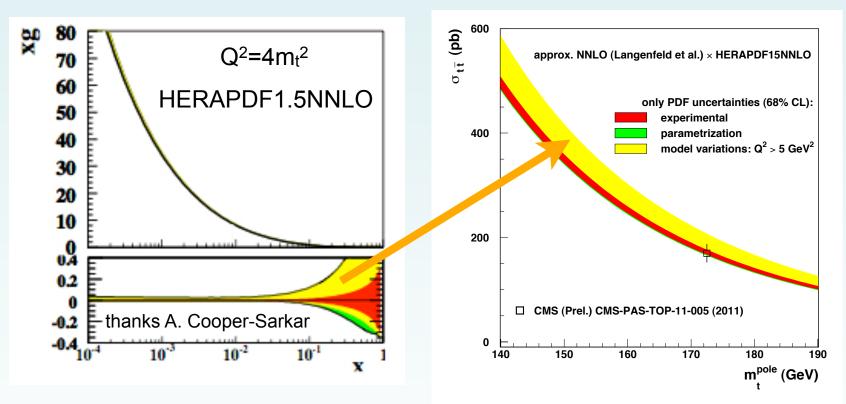
Vary the charm mass in the PDF. Use resulting PDFs for LHC predictions

Several HQ schemes

 m_c variation in PDF

 $1.4 < m_c < 1.65 \text{ GeV}$

3% uncertainty on W prediction


Using different HQ schemes:

+ 7% uncertainty

Large uncertainty on σ_W prediction due to HQ treatment in PDFs

(HERA)PDF and top quark at the LHC

Top quark at CMS: cross section @ approx. NNLO

Dominant uncertainty: variation of Q2min imposed on data used in the fit

top quark production at the LHC has potential to constrain the high-x gluon