LHCb $B^0 \rightarrow J/\psi K_s^0$ decays with first LHCb data

Murilo Rangel on behalf of the LHCb collaboration

MOTIVATION

ANALYSIS STRATEGY

Precise measurements of standard model (SM) charge-parity (CP) violation mixing angles can reveal presence of beyond SM physics.

The LHCb Experiment – Forward Spectrometer

Main Components:
♦ Vertex Locator
♦ Tracking
♦ Magnet (3.7 Tm)
♦ Rich
♦ Calorimeter

Time dependent decay rate asymmetry of $B^0 \rightarrow J/\psi K_s^{\ 0}$ probes the CKM angle β .

Since $J/\psi K_s^0$ is a CP eigenstate:

$$\begin{aligned} \mathcal{A}_{J/\psi \, K^0_{\mathrm{S}}}(t) &\equiv \frac{\Gamma(\overline{B}{}^0(t) \to J/\psi \, K^0_{\mathrm{S}}) - \Gamma(B^0(t) \to J/\psi \, K^0_{\mathrm{S}})}{\Gamma(\overline{B}{}^0(t) \to J/\psi \, K^0_{\mathrm{S}}) + \Gamma(B^0(t) \to J/\psi \, K^0_{\mathrm{S}})} \\ &= S_{J/\psi \, K^0_{\mathrm{S}}} \sin(\Delta m_d t) - C_{J/\psi \, K^0_{\mathrm{S}}} \cos(\Delta m_d t) \;, \end{aligned} \tag{1}$$

 Δm_d is the mass difference between the mass eigenstates (their decay width difference is negligible).

In the SM, CP violation $b \rightarrow c\bar{c}s$ is negligible, therefore:

♦ Calonneter
♦ Muon

Event Selection

x Two type of triggers were used: unbiased and biased. The bias is with respect to the proper time distribution. **x** Events were required to have a J/ψ candidate decaying in two muons and K_s^{0} candidate decaying in two pions.

x Vertex quality requirements are applied to enhance signal over background ratio.

x To determine the flavor of the B⁰ meson, an opposite flavor tagging was used. B⁺ \rightarrow J/ ψ K⁺ and B⁰ \rightarrow J/ ψ K* samples are used to calibrate and certify the tagging method. Events without minimum necessary tagging information are called untagged.

$$C_{J/\psi K_S^0} = 0$$

 $S_{J/\psi K_S^0} \simeq \sin 2\beta$
The world average is: $\sin 2\beta = 0.673 \pm 0.023$

The CP violation parameter is extracted through a simultaneous multidimensional unbinned extended maximum likelihood fit.

Four subsamples (biased, unbiassed, tagged and untagged) and four observables (B mass, B proper time, flavor tagging decision and wrong tag probability) are used.

Systematic

Proper Life Time and B mass Fits

RESULTS

CONCLUSIONS

First measurement of CP violation in the B⁰ \rightarrow J/ ψ K⁰_s at LHCb with 36pb⁻¹. Result is compatible with world average. Analysis strategy is validated to be used for a precise measurement with about 1fb⁻¹.

Hadron Collider Physics Symposium 2011 – Paris, France.