HadronColliderPhysics Symposium 2011

STANDARD MODEL HIGGS COMBINATION AT ATLAS

FABIEN TARRADE CARLETON UNIVERSITY ON BEHALF THE ATLAS COLLABORATION

NOVEMBER 16TH

ATLAS DATA TAKING IN 2011

A huge amount of data collected in 2011 :

- Thanks to the LHC teams for this great job
- ATLAS data taking in 2011:
 - p-p collision at $\sqrt{s}=7$ TeV
 - peak luminosity : ~3.65x10³³ cm⁻² s⁻¹
 - O(5) fb⁻¹ for analysis
 - data taking efficiency : ~93.5%

Pile-up challenge :

- 50 ns bunch train for ~all 2011 data in-and out-of-time pile up :
 <µ>~6 for 2.47 fb⁻¹ of the data collected
 <µ>~12 for 2.78 fb⁻¹ of the data collected
- Continuing details performances studies in presence of "high" pile-up

HIGGS BOSON CROSS-SECTION

FABIEN TARRADE

HADRON COLLIDER SYMPOSIUM NOVEMBER 16TH 2011

STATISTICAL PROCEDURE

Used for individual channels and S 🅢 ggs combination at ATLAS :

- Common parameters of interest is I ss-section scale factor : $\mu = \sigma/\sigma^{SM}$ $\mu = 0$ is the background only model $\mu = 1$ correspond to the nominal signal model
- Combined probability model is formed by identifying nuisance parameters v associated to common systematic effects
- The profile likelihood ratio is used as a test statistics :

 $\lambda(\mu) = L_{s+b}(\mu, \hat{\nu}) / L_{s+b}(\hat{\mu}, \hat{\nu})$

one-sided variants of the test statistic are used for the upper-limits and discovery

- Nuisance parameters are "profiles" based on the data
- The distribution of the test statistic is obtained in two way :
 - ensemble tests with with Toy Monte Carlo using a fully frequentist procedure
 - using asymptotic distribution of likelihood ratio (improved χ^2 method)
- Primary results based on CLs
 - more relevant to protect against downward fluctuations
 - additional comparison with Bayesian procedure with a uniform prior on $\mu {=} \sigma / \sigma^{\text{SM}}$

5

Use RooFit/RooStats

UNDERSTANDING OF THE BAND

Understanding of the Yellow and Green bands :

 Upper limit on the Standard Model (SM) Higgs Boson production cross section divided by the Standard Model expectation as a function of m_{Higgs}

CHANNELS INCLUDED

channels used in the SM Higgs combination at ATLAS :

- Low mass searches : $m_{Higgs} < 140 \text{ GeV}$ W/ZH with H \rightarrow bb, H $\rightarrow \tau\tau$, H $\rightarrow \gamma\gamma$
- Intermediate mass searches : 120 GeV < m_{Higgs} < 180 GeV H \rightarrow WW^(*) \rightarrow IvIv
- Higgs mass searches : 180 GeV < m_{Higgs} < 600 GeV H \rightarrow WW \rightarrow Ivqq, H \rightarrow ZZ^(*) \rightarrow IIII, H \rightarrow ZZ \rightarrow IIvv, H \rightarrow ZZ \rightarrow IIqq

Channel	Mass range (GeV)	Integrated Luminosity (fb ⁻¹)
Η → γγ	110 – 150	1.08
$H \rightarrow bb (WH,ZH)$	110 - 150	1.04
Η → ττ	110 - 150	1.06
$H \to WW^{(*)} \to I_{V}I_{V}$	110 - 300	1.70
$H \rightarrow WW \rightarrow I_V qq$	240 - 600	1.04 *(<i>NOT</i> in this version of the combination)
$H \to ZZ^{(*)} \to IIII$	110 - 600	~2.10
$H \rightarrow ZZ \rightarrow II_{VV}$	200 - 600	1.04 *(2.05 NEW and not in the combination)
H → ZZ → llqq	200 - 600	1.04 *(2.05 NEW and not in the combination)

FABIEN TARRADE

HADRON COLLIDER SYMPOSIUM NOVEMBER 16TH 2011

DETAILS PRESENTATION

More detailed presentations on the channels during this conference :

 SM Higgs Boson Searches at Low mass in ATLAS presentation by Michael Duehrssen

 ATLAS Higgs searches in WW and ZZ channels presentation by Lydia Iconomidou-Fayard

- SM search in VH, H → bb searches in ATLAS poster by Alberto Palma
- Search for SM Higgs boson in the two-photon in ATLAS poster by Olivier Andre Davignon
- Search for SM Higgs H→WW→IvIv in ATLAS poster by Xiao Meng
- SM Higgs H→ZZ→4I in ATLAS poster by Jerome Odier

8

FABIEN TARRADE HADRON COLLIDER SYMPOSIUM NOVEMBER 16TH 2011

LOW MASS CHANNELS

Key points of the analysis :

FABIEN TARRADE HADRON COLLIDER SYMPOSIU NOVEMBER 16TH 2011

LOW MASS CHANNELS

Key points of the analysis :

 H → bb (1.04 fb⁻¹) Associated production WH/ZH inclusive analysis m_{bb} shape bkg : W+(b)jets, Z+(b)jets, QCD jets

INTERMEDIATE MASS CHANNELS

HIGH MASS CHANNELS

Key points of the analysis :

• $H \rightarrow ZZ^{(*)} \rightarrow IIII (1.96-2.28 \text{ fb}^{-1})$ m₄₁ shape bkg : ZZ (mainly), Zbb, Z+jets, Top

HADRON COLLIDER SYMPOSIUM NOVEMBER 16TH 2011

HIGH MASS CHANNELS

Key points of the analysis :

combined results : tagged and untagged

13

FABIEN TARRADE HADRON COLLIDER SYMPOSIUM NOVEMBER 16TH 2011

SUMMARY OF THE CHANNELS

Summary of the individual channels :

Observed limit : ——

FABIEN TARRADE HADRON COLLIDER SYMPOSIUM NOVEMBER 16TH 2011

SYSTEMATIC UNCERTAINTIES

Treatment of the systematic uncertainties between the different channels :

	H – $ au_\ell au_{had}$	$ au au^+ au^- \ au_\ell au_\ell + jet$	$H ightarrow \gamma \gamma$	$H ightarrow bar{b}$	$ \begin{array}{c} H \to WW^{(*)} \\ \ell \nu \ell \nu \end{array} $	H. LLLL	$H \rightarrow ZZ^{(l)}$ $\ell\ell\nu\nu$	*) llqq
Luminosity	±3.7	±3.7	±3.7	±3.7	±3.7	±3.7	±3.7	±3.7
e/γ eff.	±3.5	$^{+2.0}_{-2.1}$	$^{+11.6}_{-10.4}$	±2.3	±2.2	±3.3	± 1.2	±1.1
e/γ E. scale	$^{+1.3}_{-0.1}$	$^{+0.2}_{-0.5}$	-	$^{+1.5}_{-1.6}$	± 0.1	-	$^{+0.8}_{-1.1}$	-
e/γ res.	-	± 3.7	-	$^{+2.1}_{-1.5}$	± 0.1	-	-	-
μ eff.	±1.0	$^{+2.0}_{-2.1}$	-	$^{+1.1}_{-2.0}$	±0.6	±1.2	$^{+0.8}_{-0.7}$	±0.6
μ res.	-	$^{+0.4}_{-0.6}$	-	± 5.8	±1.6	-	-	-
Jet/ τ /MET E. scale	$^{+19}_{-16}$	$+3.3 \\ -10.0$	-	$^{+21}_{-17}$	±6.1	-	$^{+5.9}_{-4.0}$	$+3.7 \\ -10.4$
JER	•	± 2.0	-	±2.5	$^{+2.2}_{-1.8}$	-	-	$^{+2.1}_{-0.0}$
MET	-	$+4.4 \\ -5.3$	-	$+5.5 \\ -6.1$	-	± 0.6	+6.6 -4.2	-
<i>b</i> -tag eff.	-	-	-	$+37 \\ -33$	± 0.1	-	$^{+4.3}_{-4.4}$	-

• Correlated systematic uncertainties (Jet Energy Scale, Luminosity, ...)

- For background estimated with data-driven, systematic uncertainties are uncorrelated
- Careful treatment of theory uncertainties (ATLAS-CMS LHC combination working group)

Production Mode	QCD Scale	PDF+α _s	Total	
ggF	+12/-7 %	±8 %	+20/-15 %	
VBF	±1 %	±4 %	±5 %	change with m _{Higgs}
WH/ZH	±1 %	±4 %	±5 %	
ttH	±4 %	±8 %	±12 %	

SM Higgs Combination at ATLAS with 2010 and 2011 data :

LOCAL P-VALUES

Local p-value of the SM Higgs combination at ATLAS :

ABSENT OF THE COMBINATION

> 3500

ର୍ ରୁ 3000

2500 Events

2000

Signal (x 100) ́т_н = 400 ĠeV

Data

Multi-jet Dibosons

 $H \rightarrow hv ii + 0 jet$

top W/Z+jets

Key points of the analysis :

• $H \rightarrow WW \rightarrow I_V qq (1.04 \text{ fb}^{-1})$ m_{lvqq} shape 0 jet, 1 jet bkg: W+jets, Top

UPDATED RESULTS

Key points of the analysis :

PROJECTION FOR THE FULL 2011 DATASET

What we can expect with the full 2011 dataset :

• Exclusion or evidence at 3σ : almost for the whole mass range

FABIEN TARRADE

HADRON COLLIDER SYMPOSIUM NOVEMBER 16TH 2011

Conclusion :

- Thanks to the excellent LHC operations, ATLAS has collected more than 5 fb⁻¹ of data (p-p collision at 7 TeV)
- The LHC dominates the SM Higgs with few fb⁻¹
- ATLAS has performed a Higgs Boson search corresponding to and integrated luminosity between 1.0 and 2.3 fb⁻¹ using several channels
- No significant excess (< 2.1 σ) is found in the mass range 110-600 GeV
- Exclusion limits at 95% C.L are set for a SM-like Higgs boson in the mass region : 146 < m_{Higgs} < 230 GeV 256 < m_{Higgs} < 282 GeV 296 < m_{Higgs} < 459 GeV with 1-2.3 fb⁻¹
- Interesting hints emerge

Outlook :

- Wait for the first ATLAS + CMS SM Higgs combination (presentation by Gigi Rolandi)
- With O(5 fb⁻¹) of data (full 2011 dataset), more than 2σ sensitivity in entire mass range with ATLAS
- Limits can be improved by optimizing the object performances (e, μ, τ, ...), by reducing the systematic and optimizing the selections
- We congratulate the LHC for terrific performances and look forward to more successful running in 2012!
- By the end of 2012 with O(10 fb⁻¹) a conclusive answer on the Standard Model Higgs should be obtained
- Very exiting times ahead ...

STAY TUNED

23

FABIEN TARRADE

HADRON COLLIDER SYMPOSIUM NOVEMBER 16TH 2011

FABIEN TARRADE HADRON COLLIDER SYMPOSIUM NOVEMBER 16TH 2011

DOCUMENTATIONS

ATLAS Public Documents :

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults

- ATLAS Luminosity and pile-up <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LuminosityPublicResults</u>
- LHC Higgs Cross-section working group <u>https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections</u>
- Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables CERN-2011-002, arXiv:1101.0593 <u>http://cdsweb.cern.ch/record/1318996</u>
- Search for the Standard Model Higgs boson in the decay mode H -> tau+ tau- -> II + 4 neutrinos in Association with jets in Proton-Proton Collisions at √s =7 TeV with the ATLAS detector ATLAS-CONF-2011-133 <u>http://cdsweb.cern.ch/record/1383836</u>
- Search for the Higgs boson in the two photon decay channel with the ATLAS detector at the LHC arXiv:1108.5895 <u>http://arxiv.org/abs/1108.5895</u>
- Search for the Standard Model Higgs boson produced in association with a vector boson and decaying to a b-quark pair with the ATLAS detector at the LHC ATLAS-CONF-2011-103 http://cdsweb.cern.ch/record/1369826

DOCUMENTATIONS

ATLAS Public Documents :

- Search for the Standard Model Higgs boson in the H->WW->Ilnunu decay mode using 1.7 fb⁻¹ of data collected with the ATLAS detector at √s=7 TeV ATLAS-CONF-2011-134 <u>http://cdsweb.cern.ch/record/1383837</u>
- Search for the Higgs boson in the H → ZZ → IIII decay channel with the ATLAS detector arXiv:1109.3615 http://arxiv.org/abs/1109.5945
- Search for a Standard Model Higgs boson in the H->ZZ->IInunu decay channel with the ATLAS detector arXiv:1109.3357 http://arxiv.org/abs/1109.3357
- Search for a heavy Standard Model Higgs boson in the channel H->ZZ->IIqq using the ATLAS detector arXiv:1108.5064 http://arxiv.org/abs/1108.5064
- Update of the Combination of Higgs Boson Searches in 1.0 to 2.3 fb⁻¹ of pp Collisions Data Taken at √s = 7 TeV with the ATLAS Experiment at the LHC ATLAS-CONF-2011-135 <u>http://cdsweb.cern.ch/record/1383838</u>

DOCUMENTATIONS

ATLAS Public Documents :

- Combination of the Searches for the Higgs Boson in ~1 fb⁻¹ of Data Taken with the ATLAS Detector at 7 TeV Center-of-Mass Energy ATLAS-CONF-2011-112 <u>http://cdsweb.cern.ch/record/1375549</u>
- Search for the Higgs boson in the H → WW → I nu jj decay channel in pp collisions at √s = 7 TeV with the ATLAS detector arXiv:1109.3615 <u>http://arxiv.org/abs/1109.3615</u>
- Search for a Standard Model Higgs boson in the H -> ZZ -> Ilnunu decay channel with 2.05 fb⁻¹ of ATLAS data ATLAS-CONF-2011-148 <u>http://cdsweb.cern.ch/record/1392668</u>
- Search for a Standard Model Higgs Boson in the mass range 200-600 GeV in the channel H -> ZZ -> Ilqq using the ATLAS Detector. ATLAS-CONF-2011-150 <u>http://cdsweb.cern.ch/record/1397901</u>
- Further investigations of ATLAS Sensitivity to Higgs Boson Production in different assumed LHC scenarios ATL-PHYS-PUB-2011-001 <u>http://cdsweb.cern.ch/record/1323856/</u>

COMMON LING STOLLMATICS

Theoretical Systematics

$\mathbf{PDF} + \alpha_s$ uncertainties

nuisance	groups of physics processes
$\mathrm{pdf}_{-}\mathrm{gg}$	$gg \to H, t\bar{t}H, VQQ, t\bar{t}, tW, tb \text{ (s-channel)}, gg \to VV$
pdf_qqbar	VBF $H, VH, V, VV, \gamma\gamma$
pdf_qg	tbq (t-channel), γ +jets

QCD scale uncertainties

nuisance	groups of physics processes
${ m QCDscale_ggH}$	total inclusive $gg \to H$
${ m QCDscale_ggH1in}$	inclusive $gg/qg \to H+ \ge 1$ jets
${ m QCDscale_ggH2in}$	inclusive $gg/qg \to H+ \ge 2$ jets
$\mathbf{QCDscale_qqH}$	VBF H
$\mathbf{QCDscale}_{\mathbf{VH}}$	associate VH
${f QCDscale_ttH}$	$t\bar{t}H$
$\mathbf{QCDscale}_{-}\mathbf{V}$	W and Z
$\mathbf{QCDscale}_{-}\mathbf{VV}$	WW, WZ, and ZZ up to NLO
${ m QCDscale_ggVV}$	$gg \to WW$ and $gg \to ZZ$
$\mathbf{QCDscale}_{\mathbf{Z}}\mathbf{QQ}$	Z with heavy flavor $q\bar{q}$ -pair
$\mathbf{QCDscale_WQQ}$	W with heavy flavor $q\bar{q}$ -pair
$\mathbf{QCDscale}_{ ext{tbar}}$	$t\bar{t}$, single top productions are lumped here for simplicity

Phenomenological uncertainties

nuisance	groups of physics processes
UEPS	all processes sensitive to modeling of UE and PS

Acceptance uncertainties

nuisance	comments
$QCDscale_WW_EXTRAP$	extrap. factor α for deriving WW bkgd in HWW analysis
$QCDscale_ttbar_EXTRAP$	extrap. factor α for deriving $t\bar{t}$ bkgd in HWW analysis

Instrumental Systematics Instrumental uncertainties

moti amentar ancer tampies	
nuisance	comments
lumi	uncertainties in luminosities

FABIEN TARRADE HADRON COLLIDER SYMPOSIUM NOVEMBER 16TH 2011

MASS SIEPS

Higgs Decay Width and Mass Resolution :

Prepared for the LHC combination (ATLAS+CMS)

FABIEN TARRADE

HADRON COLLIDER SYMPOSIUM NOVEMBER 16TH 2011

SM Higgs Combination at ATLAS with 2011 data :

SM Higgs Combination at ATLAS with 2011 data :

SM Higgs Combination at ATLAS with 2011 data :

HEAVY FOURTH GENERATION

ATLAS SM Higgs Combination with the addition of a 4th generation of fermions :

- Expected exclusion : 116 600 GeV
- Observed exclusion : 119 593 GeV

