Searches for Low Mass Higgs at the TeVatron

Federico Sforza on behalf of the CDF and D0 Collaborations

INFN & Università di Pisa

HCP 2011 - 16 November 2011

F. Sforza (INFN & Università di Pisa)

16 November 2011 1 / 20

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Low Mass Higgs at the TeVatron: Outline

- The TeVatron and the Detectors
- 2 Low Mass Higgs
- Primary Channels: Analysis Strategy
- Primary Channels: Results
- 5 Secondary Channels: Overview

Analysis details:

- http://www-cdf.fnal.gov/physics/new/hdg/Results.html
- http://www-d0.fnal.gov/Run2Physics/D0Summer2011.html

The TeVatron Heritage

Almost 30 years of hard work and outstanding results!

Retired on September 30th...

- Largest anti-matter source in the world.
- First superconducting accelerator.
- $p\bar{p}$ collision at $\sqrt{s} = 1.96$ TeV

The TeVatron leaves us $\int \mathscr{L} \simeq 12 \text{ fb}^{-1}$ of data ($\int \mathscr{L} \simeq 10 \text{ fb}^{-1}$ on tape).

Collider Run II Integrated Luminosity

The TeVatron and the Detectors

The CDF and D0 Experiments

Multipurpose detectors:

Silicon ($ \eta < 2.5, r \simeq 20$ cm) Drift cell ($ \eta < 1.1, r \simeq 130$ cm)	Inner Tracker Outer Tracker	Silicon ($ \eta < 3.0, r \simeq 10$ cm) Fiber ($ \eta < 1.7, r \simeq 50$ cm)	
Pb/CU/Scintillators ($ \eta <$ 3.6)	Calorimeters	LAr/U ($ \eta <$ 4.0)	
Drift/Scintillators ($ \eta < 1.5$)	Muon Chambers	$\begin{array}{c} \text{Drift/Scintillators} \eta < 2.0 \\ \hline \end{array}$	৩৫

F. Sforza (INFN & Università di Pisa)

Low Mass Higgs: Why is it Important?

Electroweak symmetry breaking explained, within SM, by the Higgs mechanism.

- Low mass Higgs (if $M_H \lesssim 2M_W$) favored decay channel: $H \to b\bar{b}$.
- SM Higgs coupling to fermions $\propto m_f$ from Yukawa interaction.
- \Rightarrow Higgs coupling to *b* is a fundamental test of the SM.

SM Higgs at the TeVatron

Final States

- $B(H
 ightarrow bar{b}), \, {\it M_H} \lesssim$ 135 GeV/ c^2 favored;
- $B(H
 ightarrow WW), \, {\it M_H} \gtrsim$ 135 GeV/ c^2 favored;
- $B(H \rightarrow \gamma \gamma);$
- $B(H \rightarrow \tau \bar{\tau});$

• ...

Production Mode

Direct:

$$\sigma_{gg
ightarrow H} \simeq 1.2 ~ {
m pb} ~_{(M_H = ~115~{
m GeV}/c^2)}$$

- Associate with a W/Z boson: $\sigma_{qq' \rightarrow VH} \simeq 0.3 \text{ pb} (M_H = 115 \text{ GeV}/c^2)$
- Associate with $t\bar{t}$: $\sigma_{qq' \rightarrow t\bar{t}H} \simeq 0.005 \text{ pb} (M_H = 115 \text{ GeV}/c^2)$

Image: A matched black

Low Mass Higgs

Low Mass Higgs: Search Channels

Primary channels:

- Most sensitive channels at the TeVatron and main topic of this talk.
- W/Z bosons associate production: online selection and background suppression.

Secondary channels:

• Variety of final states \Rightarrow unique challenges in each one.

Primary Channels: Analysis Strategy

Primary Channels: W/Z + H

 $ZH \rightarrow \ell \ell + b\bar{b}, \quad WH \rightarrow \ell \ell + b\bar{b}, \quad W/ZH \text{ or } VH \rightarrow \ell \ell + b\bar{b}$

Final state: $\ell(\ell)$ + Heavy Flavor Jets.

Same backgrounds ...

Backgrounds	Shape	Normalization
$WW, WZ, ZZ, t\bar{t}, single-top$	MC based	NLO,NNLO (Theory)
multi-jet (QCD)	Data driven	Fit to data
W/Z+jets	MC Based	LO, fit to data

... Same challenges:

Statistically Limited \Rightarrow Relax Cuts \Rightarrow Keep Background Under Control \Rightarrow Iterate

- Online Selection: trigger on single lepton, high *E*_T, multiple objects (*E*_T+jets) ⇒ acceptance increase / challenging MC modeling.
- ③ ℓ/ℓ Offline ID: Relax cuts increases multi-jet background ⇒ improve lepton ID / QCD-rejection.
- b-tag Algorithms: reduce background to 1/100 but limits jet selection efficiency (~ 50%).
- Final Discriminant: large irreducible backgrounds ⇒ multivariate approach can increase sensitivity by 10-20% over simple M_{Inv}.

Multivariate Techniques (MVA)

Main role in analysis improvements:

- Algorithms developed to solve classification and regression problems.
- Dimensionality reducers: (possibly) optimal combination of a set of inputs.
- Can trace non linear correlation between variables.

Neural Networks, Boosted Decision Trees, Support Vector Machines, Likelihoods, ecc...

- Really powerful tools but they need understanding.
- Training samples and cross checks must be chosen carefully.

(D) (A) (A) (A)

Neural Network Trigger Parametrization

Standard:

- Cut on significant variables to have a flat trigger efficiency.
- Or parametrize turn-on in function of 1-2 variables.

Neural Network Approach:

- Build training sample with events passing/NOT passing the trigger.
- 2 Let a NN learn when a new event passes or not the trigger.
- Oross check model/systematics on control sample.
- Obtain a multi-dimensional turn on.
- CDF $ZH \rightarrow \ell \ell b \bar{b}$: select NOT isolated (inside a jet) muons.

Improved Offline Selection

Extended Lepton Categories:

- track only leptons;
- low P_T threshold: $P_T > 15 \text{ GeV}/c$ for D0;
- loose electron selection with multivariate likelihoods;
- NN lepton selection (CDF ZH → ℓℓbb̄):
 ⇒ 20% improvement w.r.t. cut-based analysis.

Multi-jet Rejection:

- Multi-jet: composition of detector and physics effects.
- Not feasible Monte Carlo parametrization \Rightarrow inversion of lepton ID cuts, Data driven samples.
- Large systematics on normalization ⇒ important to be reduced at selection level.

b-tagging Algorithms

CDF Strategy:

- Three different *b*-tag algorithms: vertex oriented, track oriented, MVA combination.
- Combining 4 orthogonal channels with different S/B.

D0 Strategy:

- MVA b tag algorithm \Rightarrow tunable working point.
- Per-jet b ID: valuable information used also in the final discriminants.

Signal Discrimination

Resonance over falling background \Rightarrow *M*_{*lnv*} **resolution improvement effort**

NN Correction:

combines tracks, calorimeter, secondary vertex information.

$ZH ightarrow \ell \ell b ar b$:

Balance with di-lepton reconstruction.

3 jets events:

best M_{Inv} combination obtained from b-ID value of the jets.

MVA final discriminant:

• MVA combines most sensitive variables: *M*_{Inv}, b-ID, kinematic, QCD-MVA, ecc.

\Rightarrow 10-20% improvement over *M*_{*lnv*} alone.

• Neural Networks (@ CDF), Boosted Decision Trees (@ D0).

Primary Channels Results: CDF, Summer 2011

2.6

2.7

$WH \rightarrow \ell \ell b\bar{b}, \int \mathscr{L} = 7.5 \text{ fb}^{-1}$ $VH \rightarrow \ell \ell b\bar{b}, \int \mathscr{L} = 7.8 \text{ fb}^{-1}$

Primary Channels Results: D0, Summer 2011

Analysis Synergy

Combination of $H \rightarrow b\bar{b}$ search channels:

 Analysis combination constrains systematics across channels. • First step before sharing tools across analysis.

Secondary Channels: Overview

Secondary Channels: "No Higgs Left Behind"

- Vast topic: developed specific techniques for each analysis.
- Challenging measurements: small yield ($H \rightarrow \gamma \gamma$, $t\bar{t}H$)/ high background ($H \rightarrow \tau \bar{\tau}$)
- Lots of effort from D0 and CDF collaborations.
- Just some results (more in the CDF and D0 results pages):

Secondary Channels: Further Reasons

- Each secondary channel is way less sensitive than any primary channel...
- Rough combination: $\frac{1}{\sqrt{1}} \simeq 5 \times SM$, reaches comparable sensitivity!
- Secondary channels can probe BSM theories.

Fermiophobic Higgs example:

- suppress direct production and $H \rightarrow b\bar{b}$ decay.
- CDF and D0, individually, reach LEP sensitivity \Rightarrow combined $H \rightarrow \gamma \gamma$ results: Wei-Ming Yao talk. ⇒ more constraints on BSM models: Abid Patwa talk.

130

LEP limit

120

Image: A math a math

110

Fermiophobic Higgs decay BR:

m

ww.

Fractions

Branching 0.6

10-3 100

0.8

0.4

0.2

Bosonic Higgs

ZZ'

 $H \rightarrow VV$ $V = \gamma . W. Z$

DØ preliminary, 8.2 fb¹

Expected Limit ± 1 s.d.

Expected Limit + 2 s.d.

120 125 130

M_{h.} (GeV)

135 140

-Observed Limit

I FP

Expected Limit

NLO prediction

BR(h_f→m) 101

10

10100 105 110 115

140 m, (GeV/c²)

Conclusions

The TeVatron closed an era for collider physics leaving us its heritage of data...

Higgs searches are more alive than ever!

- Deep understanding of our detectors and the involved background processes.
- Advanced analysis techniques + hard work: all anayses improving more than just for the luminosity.
- Probing the low mass region of the Higgs sector: Mass, BR, BSM models, ecc...

Expected goal: reach SM sensitivity across all the mass range.

Are we right? Cross checks on SM Diboson production. \Rightarrow See Jean-Francois Grivaz talk!

Thanks for Your Attention

・ロト ・回ト ・ヨト ・ヨト

Back Up Slides

<ロ> <部> < E> < E>

LHC Higgs Production Cross Section

pp collisions at $\sqrt{s} = 7$ TeV:

F. Sforza (INFN & Università di Pisa)

 Image: Image:

BACK UP

D0 Exclusion Limits, All Mass Range

