Hard QCD Results with Jets and Photons at the Tevatron

John Paul Chou Rutgers University

On Behalf of the CDF and D0 Collaborations

Introduction

- Mature QCD studies at the Tevatron benefit physics program at the LHC
 - Challenging measurements, sensitive to (N)NLO effects as well as nonperturbative physics
 - Mature experiments have had time to think about running conditions and detector effects and how to mitigate effects of systematic uncertainties

Almost any new physics involves QCD

- Parton Distribution Functions (PDFs) for background and signal processes
- QCD often a (hugely) dominant background to new physics
 - e.g. diphotons for Higgs discovery, jet substructure for boosted Higgs, etc.
- Better understanding of QCD means improved sensitivity to new physics

- Introduction to the Tevatron
- Measurements
 - Diphoton Production (CDF/D0)
 - Exclusive Diphoton Production (CDF)
 - Multijet Production (D0)
 - Jet Substructure (CDF)
- Conclusions

HCP2011 – QCD Results with Jets and Photons at the Tevatron – Wednesday, November 16th, 2011 – JPC

Tevatron Performance

Collider Run II Peak Luminosity

Collider Run II Integrated Luminosity

- Run II ended September 30th, 2011
 - Delivered 12 fb⁻¹
 - Peak 4.3×10³² cm⁻²s⁻¹
- By comparison, Run I delivered 120 pb⁻¹

HCP2011 – QCD Results with Jets and Photons at the Tevatron – Wednesday, November 16th, 2011 – J^{PC}

Diphoton Production

- Dominant background for many new physics processes
 - Iow mass Higgs, graviton production in ADD/RS models, gauge-mediated SUSY, etc.
- Canonical channel for testing perturbative QCD
- SM diphoton production is sum of many contributions
 - Born, Box, and single- and double-fragmentation
 - dominated by quark annihilation (Born) process
 - major contribution from gluon fusion (Box) process at low Q²
 - Contribution from fragmentation suppressed by requiring isolated photons

HCP2011 – QCD Results with Jets and Photons at the Tevatron – Wednesday, November 16th, 2011 – JPC

HCP2011 – QCD Results with Jets and Photons at the Tevatron – Wednesday, November 16th, 2011 – J^{PC}

Diphoton Event Selection and **Background Subtraction**

- Select two photons with
 - asymmetric energy selection: E_T>17 GeV and E_T>15 GeV
 - showers consistent with photon: CES χ^2 <20
 - fiduciality to the central EM calorimeter: -1<y<1
 - isolation: calorimeter $E_T < 2$ GeV in a cone of $\Delta R < 0.4$
- Use track isolation to statistically subtract backgrounds from π^0 's/EM jets
 - Less sensitive than calorimeter isolation to effects of pileup, multiple interactions, energy resolution effects (at low E_T)
 - Compare data/MC efficiency difference with complementary cones
 - Systematic uncertainty on fraction of events due to diphotons: 15-20%

PRL 107, 102003 (2011); PRD 84, 052006 (2011)

CDF II Diphoton 5.4 fb

- E_T>15,17 GeV, htl<1.0, A B>0.4. Iso<2 GeV</p>

Data

Diphoton Results

Compare against various simulations

- Pythia: Both LO ME+PS and LO yy+yj w/ QED **ISR/FSR**
- RESBOS: collinear initial-state gluons resummed to NNLL
- DIPHOX: NLO (LO box diagram)
- Generally good agreement except for low M_{yy} and small $\Delta \phi$
- Uncertainty dominated by uncertainty on background subtraction

PRL 107, 102003 (2011); PRD 84, 052006 (2011)

Diphoton Event Selection and Background Subtraction

- Select two photons with
 - asymmetric energy selection: E_T>21 GeV and E_T>20 GeV
 - shower shape consistent with photon
 - central photons: |η|<0.9
 - isolation: calorimeter E_T in cone $\Delta R < 0.4$ is <10% of photon E_T
- Use neural network to separate direct photons from π^0 's/EM jets
 - trained on tracker and calorimeter isolation and preshower information
 - O_{NN} >0.3 (97% efficient for photons, 40% efficiency for π^0 's)

HCP2011 – QCD Results with Jets and Photons at the Tevatron – Wednesday, November 16th, 2011 – J^{PC}

Diphoton Results

PLB 690, 108 (2010)

Includes additional comparison with Sherpa

HCP2011 – QCD Results with Jets and Photons at the Tevatron – Wednesday, November 16th, 2011 – J^{PC}

10

Exclusive Diphotons

 Also possible to produce two "exclusive" photons through double pomeron exchange

- $p\bar{p} \rightarrow p + \gamma \gamma + \bar{p}$ ('+' implies rapidity gap)
- protons scatter diffractively (p_T<1 GeV)
- proceeds through gluon fusion; second gluon exchange ensures color cancellation
- Process suppressed (σ ~0.7 pb) with large uncertainty (factor of 3)
 - sensitive to unintegrated gluon PDFs & non-perturbative effects
 - Sudakov suppression & rapidity gap survival factor

Exclusive Diphoton Selection and Background Suppression

CDF10524

- Require two well-reconstructed, central photons with E_T>2.5 GeV
- No other activity in the detector
 - Including calorimeters (|η|<3.6), miniplug (3.6<|η|<5.2), beam shower counters (5.4<|η|<7.4), and gas Cherenkov detectors (3.7<|η|<4.7)
 - effective luminosity (0 pileup events) is 70±4 pb⁻¹; ~7% efficiency
- Processes other than $gg \rightarrow \gamma\gamma$ contribute to final state
 - Irreducible $qq \rightarrow \gamma\gamma$ (<5%) and $\gamma\gamma \rightarrow \gamma\gamma$ (<1%)
 - Reducible $\pi^0\pi^0$ and $\eta\eta$ backgrounds shown to be small
 - π^0 fake possible only if γ ranges out or falls in un-instrumented region

Exclusive Diphoton Events

CDF10524

Exclusive Diphoton Cross Section

CDF10524

- Other measurements of exclusive production at CDF
 - jets
 - charmonium
- These measurements distinguish between a wide variety of phenomenological predictions
 - which for exclusive Higgs were varying by a factor of 100

 $\sigma_{e^+e^-,\text{exclusive}}^{|\eta|<1,E_T(\gamma)>2.5\text{GeV}} = 2.88 \pm 0.59(stat) \pm 0.62(syst) \text{ pb}$ QED prediction: (3.25±0.7) pb

 $\sigma_{\gamma\gamma,\text{excl}}^{|\eta|<1,E_T(\gamma)>2.5\text{GeV}} = 2.48 \pm 0.42(stat) \pm 0.41(syst) \text{ pb}$

 Exclusive diphoton results agree nicely with KMR (Khoze, Martin, Ryskin) model

HCP2011 – QCD Results with Jets and Photons at the Tevatron – Wednesday, November 16th, 2011 – J^{PC}

Dijet Cross Section (D0)

PLB 693, 531 (2010)

- The dijet cross section is a test of perturbative QCD
 - constrains PDFs
 - notably large-x gluon distribution function
 - Sensitive to new physics
 - low mass, electroweakly produced dijet resonances not readily accessible at the LHC

Selection

- both jets required to have pT>40 GeV
- midpoint 0.7 cone algorithm used
- differential xs measured in bins of |y|max=max(|y1|, |y2|)
- corrected for instrumental effects and presented at particle level

Dijet Cross Section (D0)

- Compare with NLOJET++
 - Using MSTW2008NLO PDFs (this is the same data used to derive the PDFs)
- Uncertainty dominated by jetenergy scale uncertainty
- Experimental uncertainties similar in size to both PDF and scale uncertainties

PLB 693, 531 (2010)

Dijet Cross Section (D0)

- PLB 693, 531 (2010) • decent agreement with CTEQ6.6 PDFs at large |y|
 - CT10 PDFs have been updated with this data, as well
- fully correlated 6.1% luminosity not shown

Multijet Production (D0)

PLB 704, 434 (2011)

- Measure three-jet differential cross section
 - test of pQCD at higher order in α_s
 - Require $p_{T1}>150$ GeV and $p_{T3}>40$ GeV and well-separated jets ($R_{ij}>1.4$)
 - no requirement on pT2 except ordering
 - midpoint 0.7 jet clustering algorithm

Multijet Production (D0)

 Overall good agreement with a variety of different PDF sets

Also provide

goodness-of-fit as

a function of a_s

 MSTW and NNPDF fare best

g

HCP2011 – QCD Results with Jets and Photons at the Tevatron – Wednesday, November 16th, 2011 – J^{PC}

Jet Substructure

arXiv:1106.5952

- Considerable LHC program to search for new physics with boosted objects
 - Z' to boosted tops, W/Z+boosted Higgs, GMSB+boosted Higgs, etc.
 - Initial feasibility studies performed on simulation only
 - Important to test QCD directly with data
- Selected events with on central jet with p_T>400 GeV
 - Reject events where the jet recoils against MET or another massive

 Subtract expected pileup/UE contribution to the mass with complementary cones method

Jet Substructure

arXiv:1106.5952

- Compare differential jet cross section as a function of jet mass for different algorithms and cone sizes
 - In leading-log approximation, a jet typically acquires a large mass due to a single hard gluon emission

Jet Substructure

Angularity is defined by

- $\tau_a(R, p_T) = \frac{1}{m_J} \sum_{i \in jet} \omega_i \sin^a \theta_i [1 \cos \theta_i]^{1-a} \sim \frac{2^{a-1}}{m_J} \sum_{i \in jet} \omega_i \theta_i^{2-a}$ tower energy
- sum is over all jet constitutents (i.e. towers)
- pQCD predicts angularities of high mass jets to have sharp kinematic edges, with min and max given by:

HCP2011 – QCD Results with Jets and Photons at the Tevatron – Wednesday, November 16th, 2011 – J^{PC}

- Diphoton differential cross sections disagree with NLO calculations at low $M_{\gamma\gamma}$ and small $\Delta\varphi$
 - indication of the importance of NNLO terms and better treatment of fragmentation
 - see arXiv:1110.2375 for NNLO treatment

• First observation of exclusive diphoton production consistent with expectation

- Exclusive Higgs production at the LHC may be possible
- Nice agreement of dijet and three-jet mass cross sections with pQCD and MSTW PDFs
- Jet substructure at the Tevatron sees good overall agreement with prediction
 - First measurement of its kind ("jetography")

Backup Slides

Diphotons (CDF)

uhuhuhu

HCP2011 – QCD Results with Jets and Photons at the Tevatron – Wednesday, November 16th, 2011 – JPC

Diphotons (D0)

NNLO Diphotons at the Tevatron

27

Exclusive $\gamma\gamma$	Value
Events	43
\mathcal{L}_{int}	$1.11 \pm 0.07 ~{ m fb}^{-1}$
Photon efficiency	0.40 ± 0.02 (stat) ±0.03 (syst)
Exclusive efficiency	0.0680 ± 0.004 (syst)
Conversion acceptance	$0.57 \pm 0.06 \text{ (syst)}$
$\pi^0 \pi^0$ background (events)	0.0, <16% (95% C.L.)
Dissociation B/G (events)	$0.14 \pm 0.14 \text{ (syst)}$
Exclusive e^+e^-	
Events	34
Electron efficiency	$0.33 \pm 0.01 (stat) \pm 0.02 (syst)$
Radiative acceptance	$0.42{\pm}0.08$ (syst)
Dissociation B/G (events)	$3.8 \pm 0.4 \text{ (stat)} \pm 0.9 \text{ (syst)}$