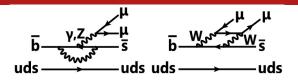
Rare B Meson Decays at Tevatron

Walter Hopkins

Cornell University

HCP November 2011


for the CDF Collaboration HCP 2011

$$b \rightarrow s \mu^+ \mu^-$$

$$b o s\mu^+\mu^-$$

CDF, 6.8 fb⁻¹, arXiv:1108.0695, Phys. Rev. Lett. 107, 201802 (2011)

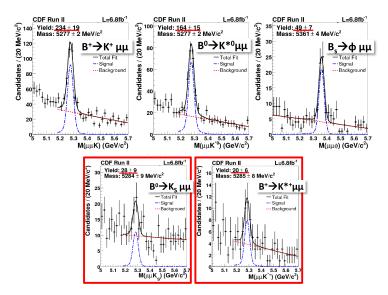
Motivation

Theory

- $b \to s \mu^+ \mu^-$ can only occur through higher order FCNC diagrams in Standard Model (SM)
- New Physics Search: Angular Measurements

Experimental Status

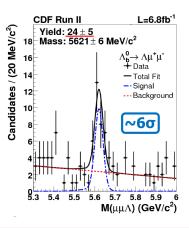
- $B^+ \to \mu^+ \mu^- K^+$: BaBar, Belle, CDF
- $B^0 \to \mu^+ \mu^- K^*$: BaBar, Belle (2.7 σ deviation for A_{FB}), CDF
- $B_s \to \mu^+ \mu^- \phi$: CDF, DØ
- $B^+ \to \mu^+ \mu^- K^{*+}$: BaBar, Belle, CDF
- $B^0 o \mu^+ \mu^- K_s$: BaBar, Belle, CDF
- $\Lambda_b \to \mu^+ \mu^- \Lambda$: **CDF**


Analysis Flow

- Measure non-resonant modes w.r.t. corresponding resonant modes $(J/\Psi \rightarrow \mu^+\mu^-)$
- Use dimuon trigger
- Reconstruct $H_b \to h \mu^+ \mu^-$
- Optimize selection with multivariate discriminant
- Measure B
- Angular measurements

Signal and Control

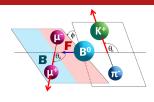
Signal Mode	Hadron Decay
$B^+ o \mu^+ \mu^- K^+$	-
$B^0 o \mu^+\mu^-K^{*0}$	$K^{*0} ightarrow K^+\pi^-$
$B_s o \mu^+ \mu^- \phi$	$\phi ightarrow K^+K^-$
$B^+ o \mu^+ \mu^- K^{*+}$	$K^{*+} o K_s\pi^+$
$B^0 o \mu^+\mu^- K_s$	$K_s ightarrow \pi^+\pi^-$
$\Lambda_b \to \mu^+ \mu^- \Lambda$	$\Lambda o p \pi^-$


Meson Decays

First reconstruction at hadron collider

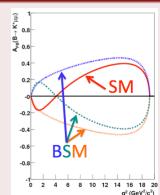
Λ_b Decay

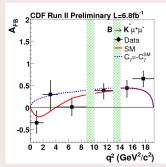
- Theory expectation: $(4.0 \pm 1.2) \times 10^{-6}$ Phys.Rev.D81, 056006 (2010)
- Rarest Λ_b to date



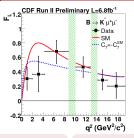
$$\mathcal{B}(\Lambda_b \to \mu^+ \mu^- \Lambda) = (1.73 \pm 0.42 [\text{stat}] \pm 0.55 [\text{syst}]) \times 10^{-6}$$

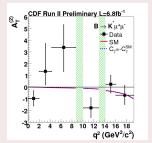
First Observation

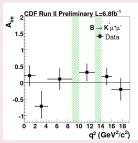

Angular Observables


- Sensitive to non-SM physics
- For $B^0 \to \mu^+ \mu^- K^*$ there are many prediction from several new physics models

• Measure $A_T^{(2)}$, A_{Im} , A_{FB} , and F_L


Expectations and Observations





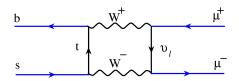
 $A_{FB}(1 < q^2 < 6) = 0.29^{+0.20}_{0.23} \text{ (stat) } \pm 0.07 \text{ (syst)}$

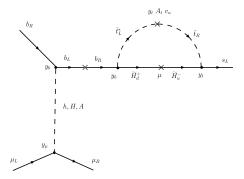
$b \to s \mu^+ \mu^-$ Angular Results

First measurements of right handed currents $A_T^{(2)}$ and A_{in} No significant deviation from SM with current statistics

$$B_s \to \mu^- \mu^+$$

$$B_{\rm s} o \mu^- \mu^+$$


and


$$B_d \to \mu^- \mu^+$$

CDF, 7 fb⁻¹, Phys. Rev. Lett. 107, 191801 (2011)

Motivation

- $B_s \to \mu^+ \mu^-$ can only occur through higher order FCNC diagrams in Standard Model (SM)
- Suppressed by the GIM Mechanism and helicity
- SM predicts very low rate with little SM background ($\mathcal{BR}(B_s \to \mu^+\mu^-) = (3.2 \pm 0.2) \times 10^{-9}$, $\mathcal{BR}(B_d \to \mu^+\mu^-) = (1.0 \pm 0.1) \times 10^{-10}$, E.Gamiz et al. (HPQCD Collaboration), A.J. Buras et al.
- BSM models predict enhancement
- Ratio of $\mathcal{BR}(B_s \to \mu^+\mu^-)$ and $\mathcal{BR}(B_d \to \mu^+\mu^-)$ is important to discriminate amongst BSM models
- Clean experimental signature

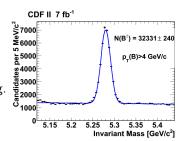
Analysis Description

Simple Analysis

- 2 Muons
- Identify methods of suppressing background and keep signal
- Look for bump in di-muon mass distribution

Analysis Strategy

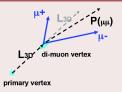
- Blind ourselves to di-muon signal mass region
- Use mass sidebands to estimate dominant background in signal region
- Optimize selection criteria a priori
- Build confidence in background estimates by employing same methods on control regions


What do we measure?

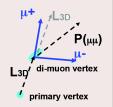
$$\mathcal{B}(B_s \to \mu^+ \mu^-) = N_{B_s} \underbrace{\left(\frac{1}{N_{B^+}} \frac{\epsilon_{B^+}^{trig}}{\epsilon_{B_s}^{trig}}\right)}_{N_{B^+}} \underbrace{\left(\frac{\epsilon_{B^+}^{reco}}{\epsilon_{B_s}^{reco}} \frac{\alpha_{B^+}}{\alpha_{B_s}} \frac{1}{\epsilon_{B_s}^{NN}}\right)}_{\left(\frac{f_u}{f_s} \cdot \mathcal{B}(B^+ \to J/\Psi K^+ \to \mu^+ \mu^- K^+)\right)}$$

From Data, From MC, From PDG

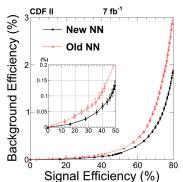
$$\boxed{ \begin{aligned} N_{B^+} \sim 2 \times 10^4, & \frac{\epsilon^{trig}_{B^+}}{\epsilon^{trig}_{B_s}} \sim 1 \\ \hline \\ \frac{\epsilon^{rec}_{B^+}}{\epsilon^{rec}_{B_s}} \sim 1, & \frac{\alpha_{B^+}}{\alpha_{B_s}} \sim 0.5, & \frac{1}{\epsilon^{NN}_{B_s}} \sim 1 \\ \hline \\ \frac{\epsilon_U}{\epsilon_s} \sim 3, & \mathcal{B}(B^+ \to J/\Psi K^+ \to \mu^+ \mu^- K^+) \sim 5 \times 10^{-5} \end{aligned} }$$

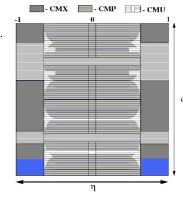

- Measure rate of $B_s \to \mu^+\mu^-$ relative to $B^+ \to J/\Psi K^+$, $J/\Psi \to \mu^+\mu^-$
- Apply same selection to find $B^+ o J/\Psi K^+$
- Systematic uncertainties will cancel in ratio, e.g. dimuon trigger efficiency is the same for both modes

Signal vs. Background

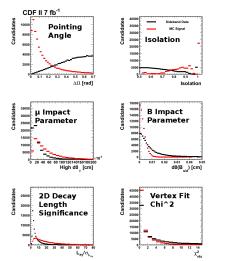

Signal Properties

- · Final state fully reconstructed
- B_s is long lived ($c\tau = \sim 450 \mu \text{m}$)
- B fragmentation is hard: few additional tracks


Background contributions & characteristics


- Sequential semi-leptonic decay: $b \to c\mu^- X \to \mu^+ \mu^- X$
- Double semi-leptonic decay: $bb \to \mu^- \mu^+ X$
- Continuum $\mu^-\mu^+$
- ullet μ + fake and fake+fake
 - Partially reconstructed
 - Softer
 - Short lived
 - Has more tracks
- $B \rightarrow hh$: peaking in signal region

Analysis Improvements


- \sim 50% more data
- 20% Increase in acceptance from CMX miniskirts and COT spacer regions
- New dE/dx calibration for better μ ID
- Improved fake rates for peaking background est.
- New NN with 2x better background rejection

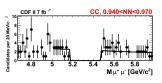
Signal Discrimination

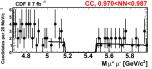
- 14 Discriminating variables
- Invariant mass of muons with 2.5σ window, σ =24 MeV

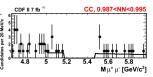
- Combined in NN, optimized with signal MC and data mass sideband
- Optimize NN a priori with data mass sideband and signal MC
- Validated NN with normalization mode and control region

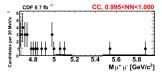
Background Estimates

Combinatorial Background

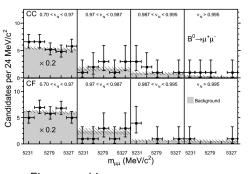

- Fit common slope to all sidebands of NN bins
- Estimate systematics due to shape uncertainty

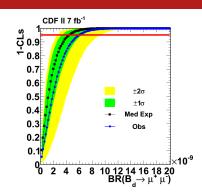

Peaking background


- Only peaking background is $B \rightarrow hh$
- Estimated using MC and D^* -tagged $D^0 o \pi^+ K^-$ data
- Only 10% of combinatorial background in B_s
- 10x larger in B_d

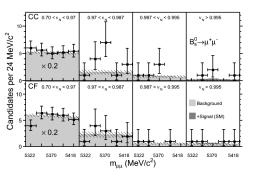

Background Cross Checks

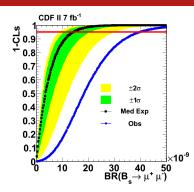
- Use background enhanced samples to check background procedure
- Good agreement





Results: B_d

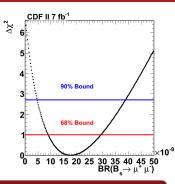




- Five mass bins
- · Five lowest NN bins combined
- Light gray: Background estimates, Hashed: Systematic errors on background
- Error bars on points: Poisson error on mean
- Expected limit: $\mathcal{B}(B_d \to \mu^+ \mu^-) < 4.6 \times 10^{-9} \ @ 95\% \ C.L.$
- No excess in B_d mass region (p-value=23%)

 B_d limit: $\mathcal{B}(B_d \to \mu^+ \mu^-) < 6.0 \times 10^{-9}$ @ 95% C.L.

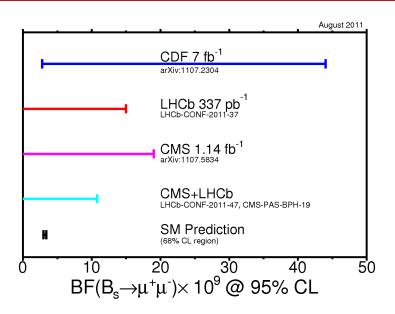
Results: Bs



- Dark gray: Expected SM signal
- Expected limit: $\mathcal{B}(B_s \to \mu^+ \mu^-) < 1.5 \times 10^{-8}$ @ 95% C.L.
- Excess over background-only in central region (the most sensitive)
 - p-value for background only hypothesis: 0.27%
 - p-value for SM+background hypothesis: 1.92%

 B_s limit: $\mathcal{B}(B_s \to \mu^+\mu^-)$ <4.0 \times 10⁻⁸ @ 95% C.L. (> 2 σ from expected)

B_s: Central Values, Bounds and P-Values


- Includes all systematics
- 90% Bound: $4.6 \times 10^{-9} < \mathcal{B}(B_s \to \mu^+ \mu^-) < 3.9 \times 10^{-8}$
- Stable: No large deviation when only using subset of bins

Summary of p-values and limits

	All Bins	2 Highest NN Bins	
Best Fit ($\times 10^{-8}$)	$1.8^{+1.1}_{-0.9}$	$1.4^{+1.0}_{-0.8}$	
90% Bounds (×10 ⁻⁸)	$0.46 < \mathcal{B} < 3.9$	$0.33 < \mathcal{B} < 3.3$	
Bkg Only p-value	0.27%	0.66%	
SM+Bkg p-value	1.92%	4.14%	

Current Experimental Status

Summary

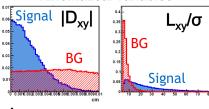
$b \rightarrow s \mu^+ \mu^-$

- Updated CDF analysis with more data and analysis improvements
- First observation or $\Lambda_b \to \mu^+ \mu^- \Lambda$
- First measurement of $A_T^{(2)}$ and A_{im}
- World's best or comparable results for A_{FB}
- Agreement with SM

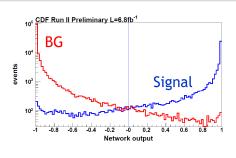
$B_s \to \mu^+ \mu^-$

- CDF updated the $B_s \to \mu^+\mu^-$ search with doubled dataset (7fb⁻¹) and improved analysis technique
- CDF has excess of $B_s \to \mu^+ \mu^-$ events at the level of 2.7σ relative to background only hypothesis
- Set the first two-sided bound on the rate: $4.6\times10^{-9}<\mathcal{B}(B_s\to\mu^+\mu^-)<3.9\times10^{-8}$ at the 90% CL, compatible with SM and other experiments
- Set upper bound on $B_d o \mu^+\mu^-$ of $\mathcal{B}(B_d o \mu^+\mu^-) < 6.0 imes 10^{-9}$
- Update analysis with full CDF dataset is ongoing

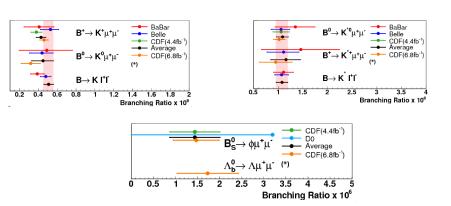
Backup


Backup Slides

Event Selection


Reconstruction

- Online selection: two muons with $p_T > 1.5$
- Offline: loose preselection + NN (optimized for best sensitivity)
- Remove resonant regions $(J/\Psi, \Psi')$
- Remove backgrounds such as B→charm and B→charmless by kinematics and muon likelihood cuts.
- Apply acceptance/efficiency corrections


Kinematical variables

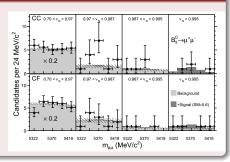
 $^{\frac{1}{3}}p_T(H_b)$, $p_T(h)$, $p_T(\mu)$, h mass, D_{xy} , L_{xy}/σ , muon likelihood...

Summary of ${\cal B}$ Measurements

World's most precise $\mathcal{B}(b \to s \mu^+ \mu^-)$ measurements

Background Estimate Check

- Check background estimates with background dominated control samples
 - Signal has two opposite sign muons with positive lifetime
 - Control samples have opposite sign negative lifetime, same-sign positive/negative lifetime, and reverse muon ID
 - Total of 64 samples
- Apply same background methods on control sample that we can unblind

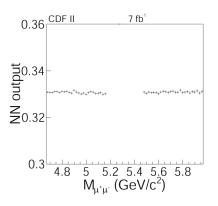

	CC		
NN cut	pred	obsv	prob(%)
0.700 <nn<0.760< th=""><th>217.4±(12.5)</th><th>203</th><th>77.7</th></nn<0.760<>	217.4±(12.5)	203	77.7
0.760 <nn<0.850< th=""><td>262.0±(14.1)</td><td>213</td><td>99.1</td></nn<0.850<>	262.0±(14.1)	213	99.1
0.850 <nn<0.900< th=""><th>$117.9 \pm (8.6)$</th><th>120</th><th>44.7</th></nn<0.900<>	$117.9 \pm (8.6)$	120	44.7
0.900 <nn<0.940< th=""><th>112.1±(8.4)</th><th>116</th><th>39.4</th></nn<0.940<>	112.1±(8.4)	116	39.4
0.940 <nn<0.970< th=""><th>$112.7 \pm (8.4)$</th><th>108</th><th>64.2</th></nn<0.970<>	$112.7 \pm (8.4)$	108	64.2
0.970 <nn<0.987< th=""><th>80.2±(6.9)</th><th>75</th><th>68.3</th></nn<0.987<>	80.2±(6.9)	75	68.3
0.987 <nn<0.995< th=""><th>$67.6 \pm (6.3)$</th><th>41</th><th>99.8</th></nn<0.995<>	$67.6 \pm (6.3)$	41	99.8
0.995 <nn<1.000< th=""><td>32.5±(4.2)</td><td>35</td><td>37.5</td></nn<1.000<>	32.5±(4.2)	35	37.5

Good agreement between observed and expected background

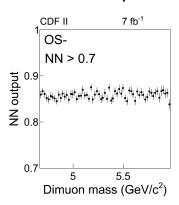
Third NN Bin Excess

Background Estimate Problem

- Combinatorial Background Problem
 - B_d Uses same sideband as $B_s \Rightarrow \text{No}$ excess in B_d
- Peaking Backgound Problem
 - Only peaking background is $B \rightarrow hh$
 - 10x larger in B_d region
 - No excess in $B_d \Rightarrow \text{good fake rates}$

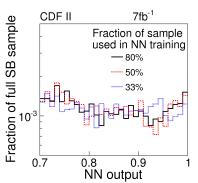


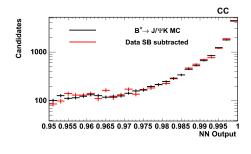
Neural Network Problem


- Mass bias?
- Overtrained?
- Mismodels data?

NN Studies: Mass bias

NN Output vs Dimuon Mass for Signal Sample (blinded)


NN Output vs Dimuon Mass for Control Sample


Unlikely to be cause of excess in 3rd NN bin of CC

NN Studies: Overtraining and Mismodeling

NN SB background eff for NN's trained on different fractions of SB

$B^+ o J/\psi K^+$ MC and Data Signal NN Output Distribution

Unlikely to be cause of excess in 3rd NN bin of CC MC models data well

Conclusion on 3rd NN bin

- Not due to any NN mismodeling
- · Not due to background mismodeling
- Only explanation left: Not unlikely statistical fluctuation in 80 bins

From PRL:

In short, there is no evidence that the excess in this bin is caused by a mistake or systematic error in our background estimates or our modeling of the ν_{NN} performance and distribution. The most plausible remaining explanation is that this is a statistical fluctuation.