Heavy Quark Production at CDF

Results, both Recent and New

Matthew Jones *Purdue University for the CDF Collaboration*

Recent Result: Observation of the Ξ_b^0 baryon

Unlike previous b-baryon observations, the Ξ_b^0 cannot be reconstructed using $\Xi_b^0 \rightarrow J/\psi \Xi^0$ because $\Xi^0 \rightarrow \Lambda \pi^0$.

Instead, search for the all-hadronic decays...

- Charged pions satisfy CDF's displaced track trigger
- Reconstruct the hadronic decays:

 $- \Xi_b^{-} \to \Xi_c^{0} \pi^{-}, \Xi_c^{0} \to \Xi^{-} \pi^{+} \quad (\text{Previously seen in } \Xi_b^{-} \to J/\psi\Xi^{-})$ $- \Xi_b^{0} \to \Xi_c^{+} \pi^{-}, \Xi_c^{+} \to \Xi^{-} \pi^{+} \pi^{+} \text{ (New!)}$

Observation of Ξ_{b} states in 4.2 fb⁻¹

Signal	Candidates	Mass (MeV/c ²)
Ξ _b -	25.8 ^{+5.5} -5.2	5796.7±5.1±1.4
Ξ _b ⁰	25.3 ^{+5.6} -5.4	5787.8±5.0±1.3

Submitted in July, 2011... published in August:

Phys. Rev. Lett. 107, 102001 (2011)

- First observation of either decay channel 6.8σ significance
- Dedicated hyperon tracking in silicon detector
- In agreement with more precise measurement of $m(\Xi_b^-) = 5790.9 \pm 2.6 \pm 0.8 \ MeV/c^2$ from $\Xi_b^- \rightarrow J/\psi\Xi^-$

Some very old results...

Phys. Rev. Lett. 79, 572 (1997)

Phys. Rev. Lett. **75**, 4358 (1995)

Prompt J/ψ and Y cross sections much larger than expected...
color-singlet vs color-octet production mechanisms
Polarization measurements

Upsilon "Polarization"

- A better term is *spin alignment...*
 - *Transverse* polarization: $|J, \lambda\rangle = |1, \pm 1\rangle$
 - Longitudinal polarization: $|J, \lambda\rangle = |1, 0\rangle$

(this is called the s-channel helicity frame)

Recent Status

 CDF found no evidence for polarization in Run I

Phys. Rev. Lett. 88, 161802 (2002).

DØ finds it to be longitudinal at low p_T, then transverse at high p_T <u>Phys. Rev. Lett. 101, 182004 (2008).</u>

• Models:

NRQCD – Braaten & Lee, Phys. Rev. D63, 071501(R) (2001) k_T – Baranov & Zotov, JETP Lett. 86, 435 (2007)

 Newer NLO calculations show similar trends: NLO NRQCD – Gong, Wang & Zhang, Phys. Rev. D83, 114021 (2011) Color singlet NNLO* - Artoisenent, *et al.* Phys. Rev. Lett. 101, 152001 (2008)

November 17, 2011

New (old) analysis paradigm

- The current situation is unsatisfactory... are we missing something obvious? Pietro Faccioli emphasizes basic quantum mechanics...
- Back to the fundamentals:

 $\frac{dN}{d\Omega} \propto 1 + \lambda_{\theta} \cos^2 \theta + \lambda_{\phi} \sin^2 \theta \cos 2\phi + \lambda_{\theta\phi} \sin 2\theta \cos \phi$ $\lambda_{\theta} = \frac{\rho_{11} - \rho_{00}}{\rho_{11} + \rho_{00}} \quad \lambda_{\varphi} = \frac{\rho_{10}}{\rho_{11} + \rho_{00}} \quad \lambda_{\theta\varphi} = \frac{\rho_{1,-1}}{\rho_{11} + \rho_{00}}$

- Un-polarized only when λ_{θ} , λ_{φ} and $\lambda_{\theta\varphi}$ are *all* zero.
- Compare rotational invariant $\tilde{\lambda} = (\lambda_{\theta} + 3\lambda_{\varphi})/(1 \lambda_{\varphi})$ in different reference frames:

s-channel helicity frame and Collins-Soper frame

New CDF Analysis – 6.7 fb⁻¹

- Goals:
 - Measure all three parameters simultaneously
 - Measure in Collins-Soper and S-channel helicity frame
 - Test self-consistency by calculating rotationally invariant combinations of λ_{θ} , λ_{ϕ} and $\lambda_{\theta\phi}$
 - Provide first measurements on the $\Upsilon(3S)$ state
- Concerns based on past experience at CDF:
 - Minimize sensitivity to modeling the Υ(nS) resonance line shape
 - Explicit measurement of angular distribution of dimuon background

Public note: CDF/PUB/BOTTOM/PUBLIC/10665

The CDF II Detector

Analysis Method

- Reconstruct μ⁺μ⁻ candidates, boost into rest frame, calculate decay angles (cos θ,φ)
- Observed distribution depends on acceptance and the underlying angular distribution:

 $\frac{dN}{d\Omega} \sim A(\cos\theta,\varphi) \times w(\cos\theta,\varphi;\vec{\lambda})$

 $-A(\cos \theta, \varphi)$ from high statistics Monte Carlo

- $w(\cos \theta, \varphi; \lambda_{\theta}, \lambda_{\varphi}, \lambda_{\theta\varphi})$ from angular distribution formula

- Performed binned likelihood fit to observed distribution of (cos θ, φ) to determine $\lambda_{\theta}, \lambda_{\varphi}, \lambda_{\theta\varphi}$.
- But there is background...

Analysis Method

- Both signal and background are present
- Conceptual problem:

$$\overline{\lambda} = f_s \lambda_s + (1 - f_s) \lambda_b$$

- Signal fraction obtained from fit to mass distribution
- How to constrain angular distribution of the background?
- Side-band extrapolation?
 - Does it vary smoothly enough?
 - Probably not...

November 17, 2011

New Approach

- Use muon impact parameter to isolate a backgroundenhanced (*displaced*) sample
 - Complimentary sample (*prompt*) contains most of the Υ(nS) signal.
 - Impact parameter requirement must not bias angular distributions:
 - Require (at least) one muon to have $|d_0| > 150 \,\mu\text{m}$
- Fit to displaced sample + prompt sidebands:
 - Measures ratio of prompt/displaced backgrounds
 - Scale displaced sample to predict background level under the $\Upsilon(nS)$
- Two component fit to $(\cos \theta, \varphi)$ distribution
 - Determines λ_{θ} , λ_{φ} , $\lambda_{\theta\varphi}$ for signal and background
 - Background parameterization is purely emperical; an additional $\cos^4 \theta$ term is helpful

Background Proxy Sample

Small fraction of the Υ signal is still present in the displaced sample (1-4%)

The ratio of prompt/secondary distributions is almost constant.

Simultaneous fit to displaced sample and Υ sidebands avoids possible bias from modeling the Υ line shape.

Quadratic scale factor function considered in systematic studies

Angular distributions in sidebands

- The sub-sample containing a displaced track ($|d_0| > 150$ μm) is a good description of the background under the Υ(nS):
- Prompt (histogram) and displaced (error bars) angular distributions match in the sidebands.
- We use the displaced muon sample to constrain the angular distribution of background under the $\Upsilon(nS)$ peaks.

Hadron Collider Physics Symposium 2011

Fits to signal + background

 The fit provides a good description of the angular distribution in both background and in signal + background mass bins.

November 17, 2011

Fitted Parameters

Frame Invariance Tests

- Differences generally consistent with size of statistical fluctuations seen in toy Monte Carlo experiments
- Differences used to quantify systematic uncertainties on $\lambda_{\theta},\,\lambda_{\phi}$ and $\lambda_{\theta\phi}$

Results for Y(1S) state

• What about the $\Upsilon(2S)$ and $\Upsilon(3S)$ states?

Results for Y(2S) state

Looks quite isotropic, even at high p_T...

First measurement of $\Upsilon(3S)$ spin alignment

• No evidence for significant polarization.

Comparison with previous results

NRQCD – Braaten & Lee, Phys. Rev. D63, 071501(R) (2001) k_T – Baranov & Zotov, JETP Lett. 86, 435 (2007)

Agrees with previous CDF publication from Run I

Comparison with previous results

- Does not agree with result from DØ at the 4.5σ level
 - Does the angular distribution evolve rapidly with rapidity?
 - Subtraction of highly polarized background?

Comparisons with newer calculations

Nucl. Phys. B 214, 3 (2011) summary:

- NLO NRQCD Gong, Wang & Zhang, Phys. Rev. D83, 114021 (2011)
- Color-singlet NLO and NNLO* Artoisenent, et al. Phys. Rev. Lett. 101, 152001 (2008)

Summary

- First complete measurement of angular distribution of Y(nS) decays at a hadron collider.
- First measurement of $\Upsilon(3S)$ spin alignment.
- No evidence for significant polarization*
 - Even up to p_T of 40 GeV/c
 - Even for the $\Upsilon(3S)$

Additional Material

Comparison with Preliminary CDF II Result

• CDF Released a preliminary result based on 2.9 fb⁻¹ in 2009

- Measurements are inconsistent.
- We investigated and have understood some potential sources of bias:
 - modeling Υ resonance line shape, acceptance calculation
 - we now know that the background is highly "polarized" and any misestimate can introduce a significant bias
- Superseded by new result which by design is less sensitive to these issues and provides assumption-free tests of internal consistency, based only on data.

November 17, 2011

Comparison with CDF Run I result

NRQCD – Braaten & Lee, Phys. Rev. D63, 071501(R) (2001) k_T – Baranov & Zotov, JETP Lett. 86, 435 (2007)

No significant difference between |y|<0.4 and |y|<0.6

November 17, 2011

Consistency Tests

CDF Run II Preliminary, 6.7 fb⁻¹

Frame Dependent Systematics

CDF Run II Preliminary, 6.7 fb⁻¹

The Background is Complicated

- Dominant background: correlated $b\overline{b}$ production
- Triggered sample is very non-isotropic
 - $p_T(b)$ spectrum falls rapidly with p_T
 - Angular distribution evolves rapidly with p_T and $m(\mu^+\mu^-)$
- Very simple toy Monte Carlo demonstrates complexity of angular distributions in the background
 - Background might peak right under the $\Upsilon(nS)$ signals in some p_{τ} ranges.
 - We chose not to use sidebands to constrain angular distribution in the background under the Υ(nS) signals.

Toy Monte Carlo for correlated $b\overline{b}$ production

Phys. Rev. D65, 094006 (2002): R.D. Field, "The sources of b-quarks at the Tevatron and their Correlations".

- p_{T} of the b-quark
- Δφ between b-quarks
- Δy between b-quarks
- p_T asymmetry
- E(µ) in B rest frame
- Peterson fragmentation
- Boost muons into lab frame
- Full detector simulation and event reconstruction
- Same analysis cuts applied to data

Hadron Collider Physics Symposium 2011

The Background is Complicated

Complex angular distribution:

Projection onto mass axis is not smooth:

8

300

2000

1500

100

Systematic Uncertainties

$p_T \; [\text{GeV}/c]$	$\lambda_{ heta} \ \Upsilon(1S)$ — Collins-Soper frame						
0-2	0.2136	+0.1442 -0.1395(stat)	$\pm 0.0468(MC)$	$\pm 0.0008(s_p)$	± 0.0199 (frame)	$\pm 0.0089(eff)$	
2-4	-0.0017	+0.0743 -0.0733	± 0.0280	± 0.0236	± 0.0067	± 0.0102	
4-6	-0.0534	+0.0690 -0.0684	± 0.0257	± 0.0191	± 0.0070	± 0.0155	
6-8	0.0298	+0.0739 -0.0721	± 0.0202	± 0.0087	± 0.0038	± 0.0009	
8-12	0.0116	+0.0526 -0.0508	± 0.0173	± 0.0059	± 0.0046	± 0.0080	
12 - 17	0.0295	+0.0569 -0.0546	± 0.0105	± 0.0037	± 0.0132	± 0.0074	
17-23	0.0326	+0.0990 -0.0874	± 0.0357	± 0.0290	± 0.0042	± 0.0086	
23-40	0.0786	+0.2124 -0.1798	± 0.0118	± 0.0064	± 0.0024	± 0.0150	

- Monte Carlo statistics
 - estimated from toy MC
- Prompt scale factor
 - change when using quadratic vs linear parameterization
- Frame
 - propagated from variation in $\tilde{\lambda}$
- Efficiencies
 - statistical uncertainty from analysis of control samples