Heavy flavor production @ ALICE

Outline

Physics motivations

ALICE detector

Open heavy flavors and quarkonia in p-p and Pb-Pb collisions

Conclusions

Heavy flavors

- heavy flavors in pp collisions:
 - test NLO pQCD in a new energy regime
 - baseline for p-A and A-A collisions
- heavy flavors in A-A collisions, tomography of QCD medium:
 - produced in initial hard scattering with short formation time
 - sensitivity to the medium properties

• parton energy loss via diff. mechanisms (collisional E_{LOSS} , medium-induced gluon radiation,...) $\rightarrow \Delta E_{med} \sim \alpha_s C_R q^{hat} L^n f(mass)$ where $q^{hat} \sim$ interaction particle \leftrightarrow medium • gluon radiation suppressed at $\Theta < m_Q/E_Q$ ("dead cone effect") $\rightarrow \Delta Eg > \Delta Eq > \Delta Ec > \Delta Eb$ expected $R_{AA} = \frac{Y_{AA}}{\langle N_{coll} \rangle_{AA} \times Y_{pp}} = \frac{Y_{AA}}{\langle T_{AA} \rangle_{AA} \times \sigma_{pp}}$ $\rightarrow R^{\pi}_{AA} < R^{D}_{AA} < R^{B}_{AA}$ see also, monday 14^m Heavy Ion, High-p, session High-p, results @ ALICE, M. van Leeuwen [Dokshitzer and Kharzeev, PLB 519 (2001) 199. Armesto, Salgado, Wiedemann, PRD 69 (2004) 114003. Djordjevic, Gyulassy, Horowitz, Wicks, NPA 783 (2007) 493...]

+ heavy flavors in p-A collisions (not covered in this talk) are also crucial: initial state effects, parton k_t broadening, gluon PDF modification.

The ALICE detector

D meson spectra in p-p collisions at = 7 √TeV

D meson cross-section in p-p collisions at $\sqrt{s_{_{NN}}} = 7$ TeV

- 1 < pt < 16(24) GeV/c with 5 nb⁻¹ (full 2010 statistics) for D0, D+ & D*, and 4.8 nb⁻¹ for D+s

- prompt D meson yield obtained after pQCD (FONLL) driven feed-down subtraction (checked against data using impact parameter distributions)

- data well described by pQCD predictions (FONLL & GM-VFNS) within errors (seem to lie systematically in the upper part of FONLL and lower part of GM-VFNS)

D meson cross-section in p-p collisions at $\sqrt{s_{_{NN}}} = 2.76 \text{ TeV}$

- 2 < pt < 8 GeV/c with 1.1 nb⁻¹ (3 days of data taking) for D0, D+ & D*

- prompt D meson yield obtained after pQCD (FONLL) driven feed-down subtraction (checked against data using impact parameter distributions)

- data well described by pQCD predictions (FONLL & GM-VFNS) within errors (seem to lie systematically in the upper part of FONLL and lower part of GM-VFNS)

Charm cross-section p-p collisions

 $\sigma(ALICE, 7TeV) = 7.73 \pm 0.54 \text{ (stat.)} +0.74, -1.38 \text{ (syst.)} \pm 0.43 \text{ (lum.)} +1.90, -0.87(extr.) mb$ $<math>\sigma(ATLAS, 7TeV) = 7.13 \pm 0.28 \text{ (stat.)} +0.90, -0.66 \text{ (syst.)} \pm 0.78(\text{lum.)} +3.82, -1.90(extr.) mb$ $<math>\sigma(LHCb, 7TeV) = 6.10 \pm 0.93 \text{ (total)} mb$ $\sigma(ALICE, 2.76TeV) = 3.45 \pm 0.41(\text{stat.}) +0.72, -0.84 \text{ (syst.)} \pm 0.17(\text{lum.}) +1.09, -0.24(extr.) mb$

Heavy flavor electrons in $|\eta| < 0.8$ p-p collisions at $\sqrt{s_{NN}} = 7$ TeV

- Subtracted cocktail of electron background based on the measured π^0 spectrum + mt-scaling + pQCD direct photons + LHC J/ ψ .
- Good agreement with FONLL b+c over the full pt range
- Consistent with the prompt charm measurement from D mesons

- Measurement of $B{\rightarrow}$ e+X from 1.5 to 6 GeV/c
- Good cross-check with D,B \rightarrow e + X and D meson measurements
- Well described by FONLL calculations

Heavy flavor muons in -4< η <-2.5 p-p collisions at $\sqrt{s_{_{NN}}} = 7$ TeV

background ($\mu \leftarrow \pi$,K) subtracted using MC normalized to data at low p_{τ} data well described by (upper part) of FONLL up to p_{τ} = 10 GeV/c and vs. η according to FONLL, $\mu \leftarrow$ b decay dominate for p_{τ} > 6 GeV/c

Christophe.Suire@ipno.in2p3.fr

FONLL: M. Cacciari et al.,

Comparing Pb-Pb to p-p: R_{AA}

$$R_{AA}(p_t) = \frac{1}{\langle T_{AA} \rangle} \times \frac{dN_{AA}/dp_t}{d\sigma_{pp}/dp_t}$$

For $p_T > 5$ GeV/c, significant and genuine hot medium effect. For $p_T < 5$ GeV/c, gluon shadowing (EPS09) can play a role \rightarrow will need to be measured at LHC via p-A collisions

Over the full $\textbf{p}_{_{T}}$ range the π $R_{_{AA}}$ is compatible with charm $R_{_{AA}}.$

 \rightarrow but systematically lower. More visible at low-pt ?

 \rightarrow B R_{AA} from CMS comparable to charm R_{AA}

Prediction is: $R^{\pi}_{AA} < R^{D}_{AA} < R^{B}_{AA}$

1) Reduce charm R_{AA} error and uncertainty. 2) Measure beauty R_{AA}

Centrality dependence of R_{AA}

Consistent centrality dependence of all probes → significant energy loss in most central Pb-Pb collisions

Electron ($|\eta| < 0.8$) R_{AA} and muon (-4.0 < η <-2.5) R_{CP} show a similar trend Prompt D mesons R_{AA} seems smaller than lepton (charm+beauty) R_{AA} (large uncertainties for HFE and R_{CP} not R_{AA} for muons) \rightarrow larger Eloss for charm w.r.t to beauty ?

Quarkonia in ALICE

J/ Ψ s in ALICE: p-p collisions

of inclusive J/ψ production Collaboration) ArXiv:1105.0380

n dependence TeV (ALICE C

momentum 5

Ш

Rapidity and transverse momin pp collisions at sqrt(s)

J/ Ψ in ALICE/LHC: p-p collisions at $\sqrt{s_{_{NN}}} = 7$ TeV

Rapidity and transverse momentum dependence of inclusive J/ψ production in p-p collisions at $\sqrt{s_{NN}} = 7$ TeV Physics Letters B 704 (2011), pp. 442-455.

Bars = statistical and systematic errors, excluding luminosity and polarisation

Box = systematic uncertainties on luminosity

 \rightarrow Good agreement between ALICE and LHCb for 2.5 < y < 4

 \rightarrow extension of $p_{_{T}}$ range measured by ATLAS and CMS down to 0 GeV/c

ALICE is unique in its broad rapidity coverage from $p_T = 0$

J/ Ψ production vs multiplicity in p-p collisions at $\sqrt{s_{_{NN}}} = 7$ TeV

Highest charged particle multiplicity ($dN_{ch}/d\eta \sim 30$) reached in p-p at 7 TeV is comparable with Cu-Cu collisions (50-55%) @ 200 GeV

 $\left[\left. dN_{ch} / d\eta \right|_{\eta=0} \sim 6 \left. \right]$

Relative J/ψ yield increase linearly with the relative multiplicity .

 \rightarrow should help understand the interplay between hard and soft interactions in the context of multi-partonic interactions (MPI), and/or underlying event

 \rightarrow model predictions are needed

J/ Ψ polarisation in p-p collisions at $\sqrt{s_{_{NN}}} = 7$ TeV

17

Next, increase p_{τ} range to compare to models and to upcoming measurements at LHC

Quarkonia in Pb-Pb: the J/Ψ case

The long standing unambiguous signature of deconfined quark matter:

Sketch of J/ ψ suppression by color screening of a c-cbar pair in a dense partonic system \rightarrow

T. Matsui and H. Satz, J/Ψ Suppression by Quark-Gluon Plasma Formation, Phys. Lett. B178, 416 (1986).

Quarkonia in Pb-Pb: the J/ Ψ case

The long standing unambiguous signature of deconfined quark matter has somehow become ambiguous:

- suppression pattern "anomalously" comparable at SPS and RHIC.
- sequential suppression: ψ' , χ_c only
- other effects
 - \rightarrow nuclear absorption
 - \rightarrow gluon PDF modification (anti-) shadowing

Statistical hadronization and regeneration models

SPS In most RHIC LHC central A-A 20 200 2.76 collisions GeV Gev TeV N_{ccbar}/event 0.2 10 56

Pb-Pb collisions: $J/\psi R_{AA}$

Pb-Pb collisions: $J/\psi R_{AA}$

Realistic charm cross-section, shadowing, b-feeddown implemented but corresponding measurements are not available....

- \rightarrow charm cross-section to be measured precisely
- \rightarrow gluon shadowing from pA collisions

Conclusions

- ALICE has measured the prompt D, HF electron/muon cross sections in p-p collisions
 - both at \sqrt{s} = 7 and 2.76 TeV
 - $_$ down to low-p_T (~ 1-2 GeV/c)
 - very well described by FONLL and GM-VFNS models
- Heavy flavor nuclear modification factor, R_{AA} in Pb-Pb collisions at 2.76TeV has been measured.
 - Prompt D mesons (inclusive HF e/ μ) R_{AA} is suppressed by about a factor of 4 (3) in the 0-20% most central Pb-Pb collisions.
- J/ ψ production measured in p-p collisions at \sqrt{s} = 7 TeV and 2.76 TeV:
 - _ down to p_{τ} = 0 at mid and forward rapidity [\rightarrow solid reference for Pb-Pb collisions]
 - J/ Ψ production scales with event multiplicity.
 - small longitudinal J/Ψ polarization observed at LHC
- J/ ψ R_{AA} in Pb-Pb collisions exhibits a novel behavior with respect to PHENIX (lower energy) and CMS (high-pt J/ ψ)
- Prospects for the ongoing 2011 Pb-Pb data taking
 - _ High precision measurement: $R_{AA}^{} p_{T}^{}$ dependence and elliptic flow
 - \rightarrow for open charm and J/ ψ !

Christophe.Suire@ipno.in2p3.fr

see also,

tuesday 15th Soft QCD/MinBias/Diffraction Results from ALICE, P. Antonioli Tomorrow Heavy ion (II) soft ALICE+ATLAS+CMS, P. Kuijer

Additional slides

- Cross section at LHC
- Data sample
- Alice Muon Spectrometer
- Charm an beauty decays
- J/ψ from B decays in p-p
- FONLL uncertainties
- D meson elliptic flow
- $J/\psi R_{cp}$ at LHC

Cross-section @ LHC

NLO predictions for charm/bottom (+ binary scaling & shadowing (average EKS98 & EPS08) in PbPb) Pb-Pb (5%) Pb-Pb (5%) pp pp 14 TeV 7 TeV 5.5 TeV 2.76 TeV $\sigma^{\text{NN}}_{\text{ qqbar }}(\textbf{mb})$ 3.4/0.14 11.2/0.5 6.9/0.23 2.1/0.075 N_{ggbar}(/event) 0.16/0.007 0.1/0.003 90/3.7 56/2

Datasets and triggers

System	рр	рр	рр	рр	PbPb
√sNN [TeV]	7	7	2.76	2.76	2.76
trigger	MB	µ-trigger	MB	µ-trigger	MB
N _{events}	up to 298 M	130 M	65 M	~9 M	17 M
L×A1×A2 (nb ⁻¹)	up to 4.8	16	1.1	20	118

Pb-Pb

- Minimum bias trigger (MB)
 - V0-A and V0-C and SPD
- Centrality from Glauber model fit to V0 signal

The ALICE muon spectrometer

Mass resolution for Υ < 100 MeV \rightarrow spatial resol. < 100 μ m along y

Charm hadronic decays

p-p collisions at $\sqrt{s_{_{NN}}} = 7 \text{ TeV}$ Recent paper ArXiv:1111.1553 D0: d σ /dy = 511±41(stat.)+ 69-173(syst.)±20(lumi.)+119-37(extr.) µb, D+: d σ /dy = 245±29(stat.)+52-90(syst.)±10(lumi.)+56-18(extr.) µb, D*+: d σ /dy = 244±27(stat.)+36-80(syst.)±10(lumi.)+57-16(extr.) µb.

FONLL uncertainties

inclusive electron spectrum and btagging

Inclusive electron spectrum

electron ID with TOF-TRD-TPC

Cocktail of known background e

- γ conversion in the detector material
- π⁰, η, η' Dalitz-decays
- ρ, ω, φ decays
- J/ψ, Y decays
- Direct γ , γ^{*} (based on NLO, W. Vogelsang)

• measured π⁰ as input

- heavier mesons: m_T scaling
- + J/ ψ , Y: ALICE and CMS measurements
- ratio Conversions/Dalitz: from the known material budget
- Strategy : select electrons from displaced vertexes
 → B-tagged electron spectrum agrees with FONLL
 → HF electrons - Charm electrons (from D mesons)
 = B-tagged electrons
 → Measured the fraction of beauty/charm vs pt

rec. track (b-tagging, ct~500µm) Primary Vertex B d₀

D meson elliptic flow

- First measurement of $D^0 {\,\rightarrow\,} K \pi$ elliptic flow using EP $\Delta \phi$ methods
- Results cross-checked with other EP methods and Q{2} method
- Looking forward for 2011 data (November) to reduce stat and syst uncertainties

Density, pressure gradients convert spatial anisotropy into momentum space dN

$$\frac{dN}{d\Phi} = N \left(1 + 2v_2 \cos 2 \left(\Phi - \psi \right) \right)$$

J/ψ elliptic flow

Lower energy measurements do not exhibit any significant v2 (or compatible with 0).

Regeneration or recombination of charm quarks for J/ Ψ production will dominate the J/ Ψ flow at LHC comparing to that at lower energies.

 \rightarrow low and mid $\textbf{p}_{_{T}}$ ranges are crucial

Status of the analysis in ALICE : READY 1) event plane with TPC tracks 2) only 2 $\Delta \Phi$ bins (in and out of plane) \rightarrow to low statistic with 2011 data \rightarrow higher statistic is needed and will be there in a few months !

non-prompts J/Ψs at LHC: p-p collisions

LHC experiments have excellent measurement capabilities

In p-p, LHCb is overlapping ALICE acceptance both in p_T (down to 0) and y. At y=0, CMS covers the $p_T > 6.5$ GeV/c region.

Eur. Phys. J. C71 (2011) 1645 LHCB collaboration

 $J/\Psi \leftarrow B$

non-prompts J/Ψs in ALICE : p-p collisions

J/ ψ from B decays at mid rapidity and low p_T: unique at LHC!

 $\sigma_{J/\psi}$ (prompt, |y|<0.9, p_T>2GeV/c) = 3.2 ± 0.38 (stat) ± 0.43 (syst) + 0.82 - 0.58 (pol) ± 4% (lum) µb \rightarrow improvements to come: higher stat. and dedicated trigger.

$J/\Psi R_{CP}$ at LHC

$$R_{CP} = \frac{Y_{J/\psi} \times \langle T_{AA}^{40-80\%} \rangle}{\langle T_{AA} \rangle \times Y_{J/\psi}^{40-80\%}}$$

Many systematics cancel and pp reference not needed.

 \rightarrow but peripheral bin is not completely equivalent to pp

Christophe.Suire@ipno.in2p3.fr

Same collision energy but VERY different phase space $\rightarrow J/\psi$ from beauty contamination is large at high p_T

- \rightarrow Less suppression at low p₊
- \rightarrow Challenging measurement at y=0 and p_T≥0 GeV/c
- \rightarrow better to work with R_{AA}

Polarisation

The polarization of the J/ ψ can be measured through the angular analysis of its daughter particles. Taking as a reference the μ^+ , its angular distribution can be expressed as:

 $\textbf{W}(\textbf{cos}\theta,\phi) \propto \textbf{1} + \lambda_{\theta} \, \textbf{cos}^2\theta + \lambda_{\phi} \, \textbf{sin}^2\theta \, \textbf{cos}2\phi + \lambda_{\theta\phi} \, \textbf{sin}2\theta \, \textbf{cos}\phi$

The reference frame can be chosen in different ways and is defined on a event-by-event basis

Direction of the quarkonium in the C.M. frame of the collision.

Disclaimer: taking into account the very different kinematical domains and the wide range of the center-of-mass energies we don't expect a p_T scaling