The Tevatron's Search for High Mass Higgs Bosons

Konstantinos A. Petridis

University of Manchester

On behalf of the CDF and DØ Collaborations

High mass Higgs searches at the Tevatron

- ► Higgs production cross sections for $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV
 - \triangleright Gluon fusion $\sigma \approx 0.2 1 \, {
 m pb}$

 - $\triangleright \quad \mbox{Vector Boson Fusion} \\ \sigma \approx 0.01 0.1 \, \mbox{pb}$
- ▶ Precision ewk data + searches (excl. LHC) yield $M_H \in (114, 185)$ GeV @95 C.L
- ► High Mass: Searches optimised for $M_H \ge 135 \text{ GeV}$

Tevatron High Mass Higgs Searches

HCP November 2011

The Tevatron

- ▶ Runl 1993-1996 ~ 120 pb⁻¹ per exp.
- ▶ RunII 2002-September 2011 ~ 12(11) fb⁻¹ del. (rec.) per exp.
- $ho~\sim 10\,{
 m fb}^{-1}$ available for physics analyses
- Presenting: D0 up to 8.1 fb⁻¹, CDF up to 8.2 fb⁻¹

(□) < (□) <</p>

CDF and DØ detectors

General purpose hermetic detectors

What is new since Winter 2011

CDF

- Addition data: $7.1 \rightarrow 8.2 \, \text{fb}^{-1}$
- Increase acceptance using narrowly separated lepton pairs
- ▶ Addition of $H \rightarrow ZZ \rightarrow 4\ell$ final state

D0

- Improve selection cuts
- ▶ 4th generation interpretation

Both

- Update signal Branching ratios (S. Dittmaier et al arXiv:1101.0593)
- ► Updated gg →H scale uncertainty according (Stewart and Tackmann arXiv:1107.2117v1)

- I Use of all feasible final states
- II Create as many sub-channels as possible
- III Use of Multivariate (MVA) techniques

I: Use of all feasible final states

- Hadron collider environment requires at least one leptonic W decay
- Dilepton (e, μ) BR $\sim 6\%$
 - Most sensitive final state
 - Lowest Background Rate
- Lepton $(e, \mu) + \tau_h$ BR $\sim 4\%$
 - \triangleright Consider hadronic au decays (au_h)
 - Provides additional sensitivity
 - Larger Background Rate
- e, μ +hadrons BR \sim 30%

 - Large Background Rate

W Branching Fractions

II: Create as many sub-channels as possible

- Optimise searches for different mixtures of signal and backgrounds
- Dedicated Associated production searches
- ▶ CDF added new $H \rightarrow ZZ \rightarrow 4\ell$ channel

Channel	CDF	DØ	
	$H \rightarrow WW^* \rightarrow \ell^- \bar{\nu} \ell^+ \nu$		
$\ell = e, \mu, 0/1/2 + jet$	$8.2{\rm fb}^{-1}$	$8.1{ m fb}^{-1}$	
$\ell = e, \mu$, ≤ 1 jet low $M_{\ell\ell}$	$8.2{ m fb}^{-1}$	-	
$\ell = au_h, \mu(e)$	$8.2{ m fb}^{-1}$	7.3 fb $^{-1}$ (μ only)	
$\ell = au_h, \mu(e), 2+ jet$	-	$4.3{\rm fb}^{-1}$	
	VH→VWW		
SS Dilepton	$8.2{\rm fb}^{-1}$	$5.4 {\rm fb}^{-1}$	
Trileptons	$8.2{ m fb}^{-1}$	-	
	$H \rightarrow WW \rightarrow \ell \nu q q$		
$\ell = e, \mu, 2+ jet$	-	$5.4 {\rm fb}^{-1}$	
	$H \rightarrow ZZ -$	$ ightarrow 4\ell$	
$\ell = e, \mu$	$8.2{\rm fb}^{-1}$	-	

III: Use of Multivariate (MVA) techniques

- ▶ Very low S/B (0.1-1.)% for m_H = 165 GeV @ final selection
- Maximise power of discriminating variables
- Input parameters: Kinematic and Event topology variables
- MVA outputs used as inputs for limit setting (Neural Networks, Decision Trees)
- Technique validated measuring SM processes (see backup)

$H \rightarrow WW^* \rightarrow \ell^- \bar{\nu} \ell^+ \nu$

Event Selection

- ▶ 2 Opposite Sign high p_T isolated leptons distinguishes from multijet and W+jets
- Missing Energy from neutrinos distinguishes from Z/γ^*
- Final state topology due to spin 0 Higgs distinguishes from WW
 - ▷ Small opening angle between leptons in Higgs decays

$\mathsf{H} { ightarrow} \mathsf{W} \mathsf{W}^* { ightarrow} \ell^- ar{m{v}} \ell^+ m{v} \; (\ell = e, \mu)$

Splitting into sub-channels I

- Lepton Flavour
 - ⊳ DØ: eµ,ee,µµ
 - CDF: Lepton flavour or quality
 - Separation gives high and low S/B regions
- Different efficiency, kinematics and resolution

$$\mathsf{H} \rightarrow \mathsf{WW}^* \rightarrow \ell^- \bar{\mathbf{v}} \ell^+ \mathbf{v} \ (\ell = e, \mu)$$

Splitting into sub-channels II

- ▶ Jet Multiplicity: 0jet, 1jet, ≥ 2jets
- Optimise on different signal/background compositions
 - ▷ 0jet: WW ▷ 1jet: Z/γ^* ,WW ▷ 2jet: $t\overline{t}$

 $H \rightarrow WW^* \rightarrow \ell^- \bar{\nu} \ell^+ \nu \ (\ell = e, \mu)$

Final Event Selection

- Reduce large Z/γ^{*} using E_T^{miss} based vars
- DØ: Train DT against Z/γ^* for $ee, \mu\mu$
 - ▷ Each jet bin and mass hypothesis
 ▷ E_T^{miss} related variables as inputs
 ▷ Select events in high DT region
- CDF: Select events with high "real" E_T^{miss}
- ► ~100 signal evts at Final Selection (CDF+DØ) $@M_H = 165 \text{ GeV}$

 $H \rightarrow WW^* \rightarrow \ell^- \bar{\nu} \ell^+ \nu \ (\ell = e, \mu)$

Extract Signal

- Train MVA using Final Selection events in each jet bin and mass
- Input discriminating variables:
- Likelihood ratio of Matrix Element calculation (0jet CDF)
- Topological+kinematic combos
 - Transverse mass of vector sum of lepton p and E_T^{miss}
- Use b-tagging information as input variable or veto in 1 or 2jet bin against tt

 $H \rightarrow WW^* \rightarrow \ell^- \bar{\nu} \ell^+ \nu \ (\ell = e, \mu)$ MVA distributions CDF: NN DØ: DT

K.A. Petridis (University of Manchester) Tevatron High Mass Higgs Searches HCP Nor

 $VH \rightarrow VWW (V=W \text{ or } Z)$

Multi-lepton and jet final states from W/Z decays

- Suppress SM backgrounds
- Same Sign Dilepton + E^{miss}_T
 - \triangleright WH \rightarrow WWW
 - Lepton charge measurement important
- Trilepton OS same flavour pair in/out Z mass window
 - \triangleright ZH \rightarrow ZWW/WH \rightarrow WWW

Other final States

Including hadronic W decays

- 52 expected signal events @M_H=160 GeV!
- Main background W+jets
- Reconstruct p_z of neutrino using W mass constraint
- Possible to extract Higgs mass for M_H >160 GeV

Including $H \rightarrow 4\ell$ ($\ell = e, \mu$)

- \blacktriangleright Sensitive to H ${\rightarrow}$ ZZ and ZH ${\rightarrow}$ ZWW
- 4e,4 μ ,2e2 μ final states
- Main background: SM ZZ production
- 4 lepton invariant mass used for limit setting

Systematic Uncertainties

- Affecting Normalization or Shape of signal and background
- Correlated luminosity (Total:6% Correlated:4%) and x-section between CDF and DØ
- Lepton ID 2 4%, Jet 3 – 25%(process dependent)

- σ^{NNLO+NNLL}_{ggH} scale variation
 jet bin dependent
- σ^{NNLO+NNLL}_{ggH} PDF uncertainty
 ⊳ 8 − 30% jet bin dependent
- Shape systematic by varying NNLO+NNLL p_T^H spectrum

$\sigma \mu_R, \mu_F$	<i>s</i> 0	<i>s</i> 1	s 2
0jet	13.4%	-23.0%	-
1jet	-	35.0%	-12.7%
\geq 2jet	-	-	33.0%

Expected signal lies above background uncertainty!

Limits

- No significant excess of signal like events is observed
- ▶ MVA outputs used to set exclusion limits at 95% C.L
 - ▷ See Weiming's talk for Tevatron combination!

D0 High Mass exclusion (all channels) $161 < M_H < 170 @95\% C.L$ $(159 < M_H < 170 expected)$ CDF High Mass exclusion (all channels) $156.7 < M_H < 173.3 @95\% C.L$ $(157 < M_H < 172.2 expected)$

4th Generation interpretation

- New heavy generation of quarks
- ▶ Boost gg \rightarrow H x-section by factor of \sim 9
- Optimise OS Dilepton searches on ggH and extend mass reach

Conclusions and Outlook

Presented an overview of the latest Tevatron High mass Higgs searches

- Large Data Samples
- All possible final states considered
- All possible channel splittings considered
- Sophisticated signal/background discriminants
- Still room for improvement
 - $ightarrow 10 \, \mathrm{fb}^{-1}$ available
 - Improvements in object ID
- Focus on improving performance for $m_H < 135 \text{ GeV}$
 - ▷ $3 \times SM$ Exp. for m_H=120 GeV @95% C.L (CDF+D0)
 - > Significant contribution to low and intermediate masses!

21 / 33

▶ Many thanks to CDF and DØ collaborators

Backup

3

イロト イヨト イヨト イヨト

K.A. Petridis (University of Manchester) Tevatron High Mass Higgs Searches HCP November 2011 23 / 33

Background estimation

- **Diboson WW,WZ,ZZ:** MC, NLO x-sec and NLO p_T^{WW} distribution
- ► Z/γ^* +jets: MC, NNLO x-section, data based correction on z-p_T
- W+jets: W+γ: Data Driven model and/or MC with data based correction
- ▶ *tī*: MC, NNLO x-section
- QCD multijet: Data Driven model

Winter 2011 result

- All High Mass channels combined
- MVA outputs used to set exclusion limits at 95% C.L

	Exp Limit x SM @165	
Channel	CDF	DØ
$H \rightarrow WW^* \rightarrow \ell^- \bar{\nu} \ell^+ \nu$		
$\ell = e, \mu, 0/1/2 + jet$	0.93 (incl. low $M_{\ell\ell}$,SS dilep,trilep)	0.97
$\ell = au_h, \mu(e)$	13.1	7.5 ($\mu \tau_h$)
$\ell= au_h,\mu(e)$, 2+ jet	-	12.3
$H \rightarrow WW \rightarrow \ell \nu qq$		
$\ell = e, \mu$, 2+ jet	-	5.1
VH→VWW		
SS Dilepton	-	7.0

æ

< A

IV: Validate analysis techniques

- \blacktriangleright Use methodology of H $\!\!\!\!\rightarrow\!\!\!\!WW$ searches to measure WW x-section
- Excellent agreement to SM prediction

Matrix Element Discriminant

The probability density for any given mode m

$$P_m(x_{obs}) = \frac{1}{\langle \sigma_m \rangle} \int \frac{d\sigma_m^{th}(y)}{dy} \epsilon(y) G(x_{obs}, y) dy$$

Event probability densities used to construct discriminant:

$$LR_S(x_{obs}) \equiv \frac{P_S(x_{obs})}{P_S(x_{obs}) + \sum_i k_i P_i(x_{obs})}, \quad \text{CDF Note 10432}$$

Responses I

Additional Theoretical Uncertainties

- Should there be an additional theoretical uncertainty assigned to our gluon fusion cross sections coming from the effective field theory (EFT) approach used to integrate electroweak contributions from heavy and light loop particles?
- · Such an uncertainty is already included:

C. Anastasiou, R. Boughezal, F. Petriello, JHEP **0904**, 003 (2009). [arXiv:0811.3458 [hep-ph]].

- Uncertainties on the gluon fusion cross section used in Tevatron Higgs searches incorporate a ~2% level component to account for this effect
- The same authors find that when they entirely remove corrections from light quark diagrams (clearly too conservative), the total cross section changes by less than 4%
- Our current treatment of EFT effects is on solid ground

M. Buehler o.b.o TEVNPHWG La Thuille 2011 4

Responses II

PDF Uncertainties

- Should our PDF uncertainties account for observed differences in cross sections ٠ obtained using our default MSTW model and ABKM/HERAPDF models?
- See Juan Rojo's talk on "Recent Developments and Open Problems in Parton Distributions" in the Tuesday afternoon session
- ABKM09 & HERAPDFs do not include Tevatron data, which provide the best ٠ constraints on the relevant high-x gluon distributions at Tevatron energies
- A comparison of high E₊ Tevatron data with ABKM09 & HERAPDF shows large disagreement:

M. Buehler o.b.o TEVNPHWG La Thuille 2011

Responses III

PDF Sets

M. Buehler o.b.o TEVNPHWG La Thuille 2011

https://www.desy.de/h1zeus/combined_results/benchmark/tev.html

H1 & Zeus collaborations:

Responses IV

Treatment of Theoretical Uncertainties

- Most theoretical uncertainties are rather loosely stated. They are interpreted in terms of a maximum range of variations (*flat prior*)
- We treat theoretical uncertainties as gaussian (gaussian prior)
- · Are we underestimating our uncertainties?
- We use the maximum bound as 1σ . This means we allow even larger variations than the given bounds. (See figure)
- We also tested the flat prior approach and found no significant change in our limits
 M. Buchler o.b.o TEVNPHWG La Thuille 2011
- · We are not underestimating our uncertainties

7

Responses V

Emulation of Tevatron Limit Calculation

- · Care needs to be taken when trying to emulate Tevatron limits
- · Correlations between different input channels need to be properly taken into account:
 - Our limit calculation uses these correlations to constrain the backgrounds
 - Our backgrounds are better constrained by the data, as compared to the theory. This can be viewed
 as a measurement of the true rate and the a posteriori uncertainty is an experimental determination
 of the true error.
- · An estimation of the sensitivity increase due to MVA is not straightforward:
 - Our pre-selection cuts are kept as loose as possible to maximize signal acceptance and cannot be interpreted as an optimized cut-based analysis
 - · MVAs are used to separate signal from background
 - · To estimate MVA sensitivity gains: compare fully optimized cut-based results with MVA results
 - MVAs typically improve limits by ~30% over optimized cut-based
- · Impact of theoretical uncertainties:
 - · Theoretical uncertainties are statistically accounted for together with other systematics
 - Increasing theoretical cross section uncertainties is not equivalent to decreasing the central prediction

M. Buehler o.b.o TEVNPHWG La Thuille 2011

8

HCP November 2011