ATLAS Higgs searches in WW and ZZ channels

LYDIA ICONOMIDOU-FAYARD (LAL-ORSAY) ON BEHALF OF THE ATLAS COLLABORATION

Lydia Iconomidou-Fayard HCP 2011

The ATLAS Detector

Multi-purpose detector at LHC Details in JINST 3 (2008) S08003

→Inner tracking system with silicon pixels, silicon microstrips and transition radiation detectors, immersed in a 2T field made by a solenoid SC magnet.

→Liquid Argon EM Calorimetry, projectively segmented in 3 layers and hermetic in φ .

→ Hadronic Calorimetry (Scintillating tiles or Larg)

→ Muon spectrometer operating in a large SC toroid magnet system.

The ATLAS Detector

Multi-purpose detector at LHC Details in JINST 3 (2008) S08003

→Inner tracking system with silicon pixels, silicon microstrips and transition radiation detectors, immersed in a 2T field made by a solenoid SC magnet.

→Liquid Argon EM Calorimetry, projectively segmented in 3 layers and hermetic in φ

→ Hadronic Calorimetry (Scintillating tiles or Larg)

→ Muon spectrometer operating in a large SC toroid magnet system.

Lydia Iconomidou-Fayard HCP 2011

→ATLAS collected 5.2 fb⁻¹ by the end of the proton-proton run at √s=7TeV.
 →Average efficiency over 2011 : ~93%

4

5

6

→ Span a large M_H range

→WW are the most abundant channels for M_H>~135GeV.
Not all final state particles are fully measured

→ Span a large M_H range

→WW are the most abundant channels for M_H>~135GeV. Not all final state particles are fully measured

→ZZ smaller rate but advantage from the full reconstruction of at least one on-shell Z. Sharp peak for ZZ→4I.

13

Two channels :

- → $H \rightarrow WW^{(*)} \rightarrow \ell^+ \nu \ell^- \overline{\nu}$ with l=µ, e (in 110-300GeV) (with 1.7 fb⁻¹ of data ATLAS-CONF-2011-134)
- → $H \rightarrow W W^{(*)} \rightarrow l \nu j j$ with l = e, μ (in 240-600GeV) (with 1.04fb⁻¹ of data arXiv:1109.3615v1 [hep-ex])

Two channels :

- → $H \rightarrow WW^{(*)} \rightarrow \ell^+ \nu \ell^- \overline{\nu}$ with l=µ, e (in 110-300GeV) (with 1.7 fb⁻¹ of data ATLAS-CONF-2011-134)
- → $H \rightarrow W W^{(*)} \rightarrow l \nu j j$ with l = e, μ (in 240-600GeV) (with 1.04fb⁻¹ of data arXiv:1109.3615v1 [hep-ex])

Common feature: Isolated lepton(s) and missing transverse momentum

15

→One single lepton P_T>30GeV, well identified and isolated
→ ETmiss> 30 GeV
→2 (H+0) or 3 (H+1) jets with one 71<M (jj)<91 GeV

16

→ One single lepton P_T >30GeV, well identified and isolated → ETmiss> 30 GeV → 2 (H+0) or 3 (H+1) jets with one 71<M (jj)<91 GeV → Reconstruct M(lvjj) from P_T (l), Etmiss and from the 2 jets, imposing M(lv)=M_W

→ One single lepton P_T>30GeV, well identified and isolated
→ ETmiss> 30 GeV
→ 2 (H+0) or 3 (H+1) jets with one 71<M (jj)<91 GeV
→ Reconstruct M(lvjj) from P_T(l), Etmiss and from the 2 jets, imposing M(lv)=M_W

Backgrounds : →W+Jets, Z+Jets and Top modelled by MC. →MultiJets assessed by data driven methods

→One single lepton P_T >30GeV, well identified and isolated

→ ETmiss> 30 GeV

→2 (H+0) or 3 (H+1) jets with one 71<M (jj)<91 GeV</p>

→ Reconstruct M(lvjj) from $P_T(l)$,

Etmiss and from the 2 jets, imposing $M(lv)=M_W$

Backgrounds : →W+Jets, Z+Jets and Top modelled by MC. →MultiJets assessed by data driven methods

→One single lepton P_T >30GeV, well identified and isolated

→ ETmiss> 30 GeV

→2 (H+0) or 3 (H+1) jets with one 71<M (jj)<91 GeV</p>

→ Reconstruct M(lvjj) from $P_T(l)$,

Etmiss and from the 2 jets, imposing $M(l\nu)=M_W$

Backgrounds : →W+Jets, Z+Jets and Top modelled by MC. →MultiJets assessed by data driven methods

20

Require

→ Opposite charge leptons
 → Apply Y and Z veto in m(ll)
 (m_{ll}>15GeV, | M_Z-M_{ll} |>15GeV)

Require

→Opposite charge leptons

- \rightarrow Apply Y and Z veto in m(ll)
- $(m_{ll} > 15 GeV, | M_Z M_{ll} | > 15 GeV)$
- →ETmiss>40(25) GeV for same /different flavor

Require

→Opposite charge leptons

- \rightarrow Apply Y and Z veto in m(ll)
- (m_{ll}>15GeV, | M_Z-M_{ll} |>15GeV)
- →ETmiss>40(25) GeV for same /different flavor

Major Backgrounds: top, W+j, Z+j, SM WW Estimated from data driven methods

Lydia Iconomidou-Fayard HCP 2011

Require

→Opposite charge leptons

 \rightarrow Apply Y and Z veto in m(ll)

(m_{ll}>15GeV, | M_Z-M_{ll} |>15GeV)

→ETmiss>40(25) GeV for same /different flavor

Different cuts for H+0, H+1 jet: \Rightarrow O-Jet : P_T (ll)>30GeV \Rightarrow 1-Jet : Reject b-jet, P_T>25GeV, (P_T (l1)+ P_T (l2)+P_T(jet)+Etmiss)<30GeV, Z->\tau\tau veto

Major Backgrounds: top, W+j, Z+j, SM WW Estimated from data driven methods GeV ATLAS Preliminary s = 7 TeV, L dt = 1.70 fb S Entries / 106 10⁴ 10 ATLAS Preliminary √s = 7 TeV, L dt = 1.70 fb Entries / l→WW→evev Data / MC H [150 GeV 10 10 10 0.5 10 10 10 Data / MC 1.5 0.5 80 100 120 140 160 180 200 E^{miss}_{T rel} [GeV]

Require

→Opposite charge leptons

 \rightarrow Apply Y and Z veto in m(ll)

(m_{ll}>15GeV, | M_Z-M_{ll} |>15GeV)

→ETmiss>40(25) GeV for same /different flavor

Different cuts for H+0, H+1 jet: \Rightarrow O-Jet : P_T (ll)>30GeV \Rightarrow 1-Jet : Reject b-jet, P_T>25GeV, (P_T (l1)+ P_T (l2)+P_T(jet)+Etmiss)<30GeV, Z->\tau\tau veto

Major Backgrounds: top, W+j, Z+j, SM WW Estimated from data driven methods

16/11/2011

Lydia Iconomidou-Fayard HCP 2011

Lydia Iconomidou-Fayard HCP 2011

Excluded : 154GeV<M_H <186GeV

Lydia Iconomidou-Fayard HCP 2011

Excluded : 154GeV<M_H <186GeV

Lydia Iconomidou-Fayard HCP 2011

Three channels :

- → $H \rightarrow ZZ \rightarrow |^+|^- \nu \nu$ with $l = \mu$, e (200-600 GeV) (with 2.05fb⁻¹ of data NEW ATLAS-CONF-2011-148)
- → $H \rightarrow ZZ \rightarrow I^+I^- qq$ with $I=\mu$, e (200-600 GeV) (with 2.05fb⁻¹ of data NEW ATLAS-CONF-2011-150)
- → $H \rightarrow ZZ^{(*)} \rightarrow 4l$ with with $l=\mu$, e (120-600 GeV) (with 2.1 fb⁻¹ LP result Phys. Lett. B 705 (2011) 435-451

Three channels :

- → $H \rightarrow ZZ \rightarrow |^+|^- \nu \nu$ with $l = \mu$, e (200-600 GeV) (with 2.05fb⁻¹ of data NEW ATLAS-CONF-2011-148)
- → $H \rightarrow ZZ \rightarrow I^+I^- qq$ with $I=\mu$, e (200-600 GeV) (with 2.05fb⁻¹ of data NEW ATLAS-CONF-2011-150)
- → $H \rightarrow ZZ^{(*)} \rightarrow 4l$ with with $l=\mu$, e (120-600 GeV) (with 2.1 fb⁻¹ LP result Phys. Lett. B 705 (2011) 435-451

Common feature: Isolated leptons and at least one on-shell Z

$H \rightarrow ZZ \rightarrow l^+l^-q\overline{q}$ (l=e or μ) selection

→ ZZ->llqq , both Zs on shell Two leptons with P_T >20GeV,well identified , with isolated tracks and $M_{ll} \in [M_Z \pm 15]$ GeV → Z->qq: jets reconstructed using anti-Kt algorithm with P_T >25 GeV and Mjj \in [70,105]GeV → Etmiss<50GeV

$H \rightarrow ZZ \rightarrow l^+l^-q\overline{q}$ (l=e or μ) selection

→ ZZ->llqq , both Zs on shell Two leptons with P_T >20GeV,well identified , with isolated tracks and $M_{ll} \in [M_Z \pm 15]$ GeV . → Z->qq: jets reconstructed using anti-Kt algorithm with P_T >25 GeV and Mjj \in [70,105]GeV → Etmiss<50GeV

$H \rightarrow ZZ \rightarrow l^+l^-q\overline{q}$ (l=e or μ) selection

→ ZZ->llqq , both Zs on shell Two leptons with P_T >20GeV,well identified , with isolated tracks and $M_{ll} \in [M_Z \pm 15]$ GeV → Z->qq: jets reconstructed using anti-Kt algorithm with P_T >25 GeV and Mjj \in [70,105]GeV → Etmiss<50GeV

→20% of signal contain 2 b-jets.
Divide sample into Z+2 b-tagged jets and into Z+<2 tagged jets
→tagging: 70% efficiency for a light jet rejection of 100

$H \rightarrow ZZ \rightarrow l^+l^-q\bar{q}$ (l=e or μ) background

36

→Main backgrounds : Z+jets and tt →Assessed with data-driven studies using Mjj or M_{11} sidebands respectively

$H \rightarrow ZZ \rightarrow l^+l^-q\bar{q}$ (l=e or μ) background

→Main backgrounds : Z+jets and tt →Assessed with data-driven studies using Mjj or M_{II} sidebands respectively

$H \rightarrow ZZ \rightarrow l^+l^-q\bar{q}$ (l=e or μ) background

→Main backgrounds : Z+jets and tt →Assessed with data-driven studies using Mjj or M_{II} sidebands respectively

→ For M_H >300GeV, angular kinematical cuts allow better rejection against Z+jets $\Delta \Phi(jj) < 90^\circ$, $\Delta \Phi(ll) < 90^\circ$, P_T >45GeV

$H \rightarrow ZZ \rightarrow l^+l^-q\overline{q}$ (l=e or μ): Results

39

Final discriminant M (lljj)

16/11/2011

Lydia Iconomidou-Fayard HCP 2011

$H \rightarrow ZZ \rightarrow l^+l^-q\overline{q}$ (l=e or μ): Results

40

Final discriminant M (lljj)

16/11/2011

Lydia Iconomidou-Fayard HCP 2011

$H \rightarrow ZZ \rightarrow l^+ l^- v \overline{v}$ (l=e or μ): Selection

41

→Require isolated leptons with P_T >20GeV → $M_{ll} \in [M_Z \pm 15]$ →ETmiss

→If jets require to be far from ETmiss

$H \rightarrow ZZ \rightarrow l^+ l^- v \overline{v}$ (l=e or μ): Selection

→ Require isolated leptons with P_T>20GeV
 → M_{II} ∈ [M_Z ± 15]
 → ETmiss

→If jets require to be far from ETmiss

$H \rightarrow ZZ \rightarrow l^+ l^- v \overline{v}$ (l=e or μ): Selection

→ Require isolated leptons with P_T>20GeV
 → M_{II} ∈ [M_Z ± 15]
 → ETmiss

→If jets require to be far from Etmiss

Backgrounds

→Main reducible: Z+jets and tt from data driven methods

 \rightarrow ZZ, WW from MC

$H \rightarrow ZZ \rightarrow l^+ l^- v \overline{v}$ (l=e or μ): Backgrounds

→ High M_H hypothesis (>280GeV): Etmiss>82GeV $\Delta\Phi(ll)<2.25$ $\Delta\Phi$ (Etmiss, P_T (ll)) > 1

→Low M_H hypothesis (<280GeV): Etmiss>66GeV and 1<∆Φ(ll)<2.64</p>

Lydia Iconomidou-Fayard HCP 2011

Lydia Iconomidou-Fayard HCP 2011

$H \rightarrow ZZ^* \rightarrow 4l$ (l=e or μ): selection

→The "GOLDEN" channel

 \rightarrow Allows M_H reconstruction with

fwhm~5(35)GeV at M_H =130(400)GeV

→Allows to probe low M_H through Z^*

(performances at low P_T crucial!).

→All leptons $P_T > 7$ GeV well identified and isolated .

→ Require one $M_{ll} \in [M_Z \pm 15 GeV]$

→ Constraints on impact parameter

$H \rightarrow ZZ^* \rightarrow 4l$ (l=e or μ): selection

→The "GOLDEN" channel

 \rightarrow Allows M_H reconstruction with

fwhm~5(35)GeV at M_H =130(400)GeV

→Allows to probe low M_H through Z^*

(performances at low P_T crucial!).

→ All leptons $P_T > 7$ GeV well identified and isolated .

→ Require one $M_{ll} \in [M_Z \pm 15 GeV]$

➔ Constraints on impact parameter

Main background: irreducible ZZ. From MC normalized to the luminosity. Other reducible: Z+light jets, tt, Z+bb, from data driven methods .

$H \rightarrow ZZ^* \rightarrow 4l$ (l=e or μ): selection

→The "GOLDEN" channel

→Allows M_H reconstruction with fwhm~5(35)GeV at M_H =130(400)GeV →Allows to probe low M_H through Z* (performances at low P_T crucial!). →All leptons P_T >7 GeV well identified and isolated .

- → Require one $M_{ll} \in [M_Z \pm 15 GeV]$
- → Constraints on impact parameter

Main background: irreducible ZZ. From MC normalized to the luminosity. Other reducible: Z+light jets, tt, Z+bb, from data driven methods .

Lydia Iconomidou-Fayard HCP 2011

Lydia Iconomidou-Fayard HCP 2011

Conclusions and Prospects

52

- →ATLAS collaboration has provided updated exclusion limits for SM Higgs decays in diboson channels. No excess has been observed. Other results:
 - \rightarrow Searches at low M_H : see talk by Michael Duehrssen-Debling
 - → Combined ATLAS result : see talk by Fabien Tarrade.
- → Next milestones:
 - → December: Higgs channels with full statistics.
 - → Winter conferences : Update with optimised object performances and analyses.

Conclusions and Prospects

- →ATLAS collaboration has provided updated exclusion limits for SM Higgs decays in diboson channels. No excess has been observed. Other results:
 - \rightarrow Searches at low M_H : see talk by Michael Duehrssen-Debling
 - → Combined ATLAS result : see talk by Fabien Tarrade.
- ➔ Next milestones:
 - → December: Higgs channels with full statistics

➔ Winter conferences : Update with optimised object performances and analyses.

Thank you !

Systematics of $Z \rightarrow || qq$

55

Source of Uncertainty	Treatment in analysis
Jet Energy Scale (JES)	2 – 7% as a function of p_T and η
Jet Pile-up Uncertainty	3 – 7% as a function of p_T and η
b-quark Energy Scale	2.5%
Jet Energy Resolution	1-4%
Electron Selection Efficiency	0.7 $-$ 3% as a function of p_T , 0.4 $-$ 6% as a function of η
Electron Reconstruction Efficiency	$0.7 - 1.8\%$ as a function of η
Electron Energy Scale	0.1-6% as a function of η , pileup, material effects etc.
Electron Energy Resolution	Sampling term 20%, a small constant term has a large variation with η
Muon Selection Efficiency	0.2-3% as a function of p_T
Muon Trigger Efficiency	< 1%
Muon Momentum Scale	2-16% η dependent systematic on scale
Muon Momentum Resolution	$ ho_{\mathcal{T}}$ and η dependent resolution smearing functions, systematic $\leq 1\%$
b-tagging Efficiency	5-15% as a function of p_T
b-tagging Mis-tag Rate	10-22% as a function of p_T and η
Missing Transverse Energy	Propagate object uncertainties to ${\cal E}_T^{ m miss}$

Number of events in $H \rightarrow ZZ \rightarrow IIqq$ (2.05fb⁻¹)

56

	Unta	agged	Tagged			
	$Low-m_H$	$High-m_H$	$Low-m_H$	$High-m_H$		
Z+jets	$20672 \pm 110 \pm 310$	$858 \pm 20 \pm 61$	$126 \pm 1 \pm 26$	$7.6 \pm 0.2 \pm 1.6$		
W+jets	$20 \pm 4 \pm 10$	$0.8 \pm 0.5 \pm 0.4$	< 0.1	< 0.1		
Top	$85 \pm 2 \pm 11$	$6.4 \pm 0.5 \pm 1.1$	$24 \pm 1 \pm 5$	$2.2\pm0.4\pm0.5$		
Multijet	$87 \pm 3 \pm 87$	$2.1 \pm 0.5 \pm 2.1$	$0.1 \pm 0.1 \pm 0.1$	< 0.1		
ZZ	$214 \pm 7 \pm 28$	$17.2 \pm 1.8 \pm 2.8$	$14.0 \pm 1.5 \pm 3.8$	$1.7\pm0.5\pm0.5$		
WZ	$292\pm 6\pm 56$	$34 \pm 2 \pm 6$	$0.6 \pm 0.3 \pm 0.3$	< 0.1		
Total background	$21369 \pm 110 \pm 332$	$919 \pm 20 \pm 62$	$165 \pm 2 \pm 27$	$11.6 \pm 0.6 \pm 1.8$		
Data	21032	851	145	6		
Signal						
$m_H = 200 \text{ GeV}$	$64 \pm 1 \pm 12$		$4.4 \pm 0.4 \pm 1.1$			
$m_H = 300 \text{ GeV}$		$14.0 \pm 0.5 \pm 2.9$		$1.2 \pm 0.1 \pm 0.3$		
$m_H = 400 \text{ GeV}$		$21.1 \pm 0.5 \pm 3.8$		$2.1\pm0.2\pm0.6$		
$m_H = 500 \text{ GeV}$		$11.5 \pm 0.2 \pm 2.1$		$1.3 \pm 0.1 \pm 0.4$		
$m_H = 600 \text{ GeV}$		$5.4 \pm 0.1 \pm 1.0$		$0.5 \pm 0.0 \pm 0.2$		

Event yields for $H \rightarrow ZZ \rightarrow IIvv$ (2.05fb⁻¹)

57

Source	low $m_{\rm H}$ search	high $m_{\rm H}$ search	
Z + jets	$40.5 \pm 4.1 \pm 3.1$	$9.9 \pm 2.1 \pm 3.6$	
W + jets	$17\pm4\pm17$	$6.1 \pm 1.7 \pm 6.1$	
top	$40\pm1\pm12$	$20.9 \pm 1.0 \pm 6.2$	
Multijet	$1.2 \pm 0.7 \pm 0.6$	$0.4 \pm 0.4 \pm 0.2$	
ZZ	$35.1 \pm 0.7 \pm 4.1$	$29.6 \pm 0.6 \pm 3.5$	
WZ	$32.4 \pm 1.0 \pm 3.8$	$23.2 \pm 0.8 \pm 2.7$	
WW	$25.4 \pm 0.7 \pm 3.1$	$9.4 \pm 0.4 \pm 1.1$	
Total BG	$192\pm 6\pm 35$	$100\pm3\pm17$	
Data	175	89	
$m_{\rm H} [{\rm GeV}]$	Signal ex	pectation	s/b
200	$9.9 \pm 0.2 \pm 1.8$		8%
300		$19.9 \pm 0.3 \pm 3.5$	24%
400		$19.6 \pm 0.3 \pm 3.4$	57%
500		$8.8 \pm 0.1 \pm 1.5$	60%
600		$3.6 \pm 0.0 \pm 0.6$	60%

Lydia Iconomidou-Fayard HCP 2011

Experimental systematics in H→WW*→lvlv

58

Table 2: Experimental sources of systematic uncertainty per object or event.

Source of Uncertainty	Treatment in the analysis
Jet Energy Resolution (JER)	~ 14%, see Ref. [69]
Jet Energy Scale (JES)	Takes into account close-by jets effect, jet flavor composition uncertainty
	and event pile-up uncertainty in addition to global JES uncertainty
	Global JES < 10% for $p_{\rm T}$ > 15 GeV and $ \eta $ < 4.5, see Ref. [70]
	Pile-up uncertainty 2-5% for $ \eta < 2.1$ and 3-7% for $2.1 < \eta < 4.5$
	These are summed in quadrature before application.
Electron Selection Efficiency	Separate systematics for electron identification,
	reconstruction and isolation, added in quadrature
	Total uncertainty of 2-5% depending on η and E_T
Electron Energy Scale	Uncertainty smaller than 1%, depending on η and E_T
Electron Energy Resolution	Energy varied within its uncertainty, 0.6% of the energy at most
Muon Selection Efficiency	0.3-1% as a function of η and $p_{\rm T}$
Muon Momentum Scale	η dependent scale offset in $p_{\rm T}$, up to ~ 0.13%
Muon Momentum Resolution	$p_{\rm T}$ and η dependent resolution smearing functions, $\leq 5\%$
b-tagging Efficiency	$p_{\rm T}$ dependent scale factor uncertainties, 5.6-15%, see Ref. [68]
b-tagging Mis-tag Rate	up to 21% as a function of $p_{\rm T}$, see Ref. [68]
Missing Transverse Energy	13.2% uncertainty on topological cluster energy
	Electron and muon $p_{\rm T}$ changes from smearing propagated to MET
	Effect of out-of-time pileup: MET smeared by 5 GeV in 1/3 of MC events
Luminosity	3.7% [25]

Number of events of H+0 jet \rightarrow WW* \rightarrow IvIv (1.7fb⁻¹)

59

	Signal	WW	W + jets	Z/γ^* + jets	tī	tW/tb/tqb	$WZ/ZZ/W\gamma$	Total Bkg.	Observed
Jet Veto	82 ± 17	430 ± 40	70 ± 40	160 ± 150	37 ± 13	28 ± 7	11 ± 3	740 ± 160	738
$ \mathbf{P}_{\mathrm{T}}^{\ell\ell} > 30 \mathrm{GeV}$	79 ± 17	390 ± 40	60 ± 30	28 ± 11	35 ± 12	25 ± 7	10 ± 3	540 ± 80	574
$m_{\ell\ell} < 50 \text{ GeV}$	56 ± 12	98 ± 13	17 ± 7	12 ± 7	6 ± 3	4.8 ± 1.5	1.2 ± 0.4	139 ± 20	175
$\Delta \phi_{\ell\ell} < 1.3$	48 ± 11	76 ± 10	9 ± 4	8 ± 6	5 ± 2	4.8 ± 1.5	1.1 ± 0.3	105 ± 16	131
$0.75 m_H < m_T < m_H$	34 ± 7	43 ± 6	5 ± 2	2 ± 4	2.2 ± 1.4	1.2 ± 0.8	0.7 ± 0.3	53 ± 9	70
ee	5.2 ± 1.2	6.2 ± 0.9	0.9 ± 0.4	0.8 ± 1.4	0.3 ± 0.3	0 ± 0.3	0.07 ± 0.05	8.2 ± 1.7	9
еμ	17 ± 4	22 ± 3	2.8 ± 1.3	0 ± 1.3	1.1 ± 0.5	0.8 ± 0.6	0.31 ± 0.19	27 ± 4	32
μμ	11 ± 2	14 ± 2	1.0 ± 0.6	1 ± 3	0.8 ± 1.1	0.4 ± 0.4	0.31 ± 0.09	18 ± 5	29

Event yields for $H \rightarrow ZZ^* \rightarrow 4I$ (2.1fb⁻¹)

	$\mu\mu\mu\mu$		ee	μμ	eeee	
	Low mass	High mass	Low mass	High mass	Low mass	High mass
Integrated Luminosity	2.28	fb^{-1}	1.96	$\rm fb^{-1}$	$1.98 { m ~fb^{-1}}$	
$ZZ^{(*)}$	$1.02 {\pm} 0.15$	$7.7{\pm}1.2$	$0.99 {\pm} 0.16$	$9.6{\pm}1.4$	$0.39 {\pm} 0.09$	$3.6{\pm}0.5$
$Z, Z b \bar{b}, t \bar{t}$	$0.06 {\pm} 0.01$	$0.01{\pm}0.01$	$0.29{\pm}0.11$	$0.15{\pm}0.06$	$0.23 {\pm} 0.09$	$0.12{\pm}0.05$
Total Background	1.08 ± 0.15	7.7 ± 1.2	1.28 ± 0.19	$9.8{\pm}1.4$	0.62 ± 0.13	$3.7{\pm}0.5$
Data	1	11	1	8	1	5
$m_H = 130 \text{ GeV}$	0.42 ± 0.07		0.40 ± 0.06		0.14 ± 0.03	
$m_H = 150 \text{ GeV}$	0.98 ± 0.15		0.97 ± 0.15		0.34 ± 0.06	
$m_H = 200 \text{ GeV}$		2.26 ± 0.33		2.64 ± 0.38		0.98 ± 0.14
$m_H = 240 \text{ GeV}$		1.74 ± 0.25		2.24 ± 0.32		0.88 ± 0.13
$m_H = 300 \text{ GeV}$		1.18 ± 0.17		1.64 ± 0.23		0.64 ± 0.09
$m_H = 400 \text{ GeV}$		0.86 ± 0.13		1.23 ± 0.18		0.52 ± 0.08
$m_H = 600 \text{ GeV}$		0.15 ± 0.02		0.23 ± 0.04		0.10 ± 0.02

H→WW*→lvjj

61

	$H(e\nu jj) + 0j$	$H(\mu\nu jj) + 0j$	$H(e\nu jj) + 1j$	$H(\mu\nu jj) + 1j$	H + 0j or 1j
W/Z+jets	10780 ± 290	13380 ± 870	6510 ± 250	7410 ± 670	38080 ± 1160
Multi-jet	890 ± 24	256 ± 17	669 ± 25	212 ± 19	2027 ± 43
Top	170 ± 34	164 ± 33	489 ± 98	500 ± 100	1320 ± 270
Dibosons	397 ± 79	414 ± 83	161 ± 32	204 ± 41	1180 ± 240
Expected Background	12240 ± 300	14210 ± 870	7830 ± 270	8330 ± 680	42600 ± 1200
Data	11988	13906	7543	8250	41687
Expected Signal $(m_H = 400 \text{ GeV})$	14 ± 3.6	12 ± 3.1	18 ± 4.7	14 ± 3.6	58 ± 15

Lydia Iconomidou-Fayard HCP 2011

