Supersymmetry Searches in ATLAS

Paul de Jong, Nikhef On behalf of the ATLAS Collaboration

12

November 14 - 18, 2011 Paris, France The Hadron Collider Physics Symposium 2011 will be hosted by LPNHE / University of Paris VI & VII, in Paris, France. The 22nd conference in this series, this meeting will showcase the latest results from the LHC, Tevatron, RHIC and HERA. Excellent performance LHC 2011: > 5 fb⁻¹ !

Large phase space beyond Tevatron for high mass particles

 Instantaneous lumi > 3.5 x 10³³ cm⁻²s⁻¹
 → Triggering challenging! Especially on jets. Workhorse triggers: jet+E_T^{miss}, leptons

LHC: sensitivity first to strong production of coloured sparticles

But with > 5 fb⁻¹, electroweak production becomes important too

Results shown in this talk: typically ~1 fb⁻¹ Data taken in the first half of 2011 We do not know how exactly SUSY might show up first. A good start could be:

"Canonical" searches with jets and missing momentum

Keep analyses simple, general and robust Do not overtune on specific models

1.04 fb⁻¹

Effective mass (m_{eff}) distributions in signal regions.

No excess observed: limits set (CL_s method, profile likelihood technique))

	Drogess			Signal Region		
	Flocess	≥ 2-jet	≥ 3-jet	\geq 4-jet, $m_{\rm eff}$ > 500 GeV	\geq 4-jet, $m_{\rm eff}$ > 1000 GeV	High mass
	Z/γ +jets	$32.3 \pm 2.6 \pm 6.9$	$25.5 \pm 2.6 \pm 4.9$	$209 \pm 9 \pm 38$	$16.2 \pm 2.2 \pm 3.7$	$3.3 \pm 1.0 \pm 1.3$
	W+jets	$26.4 \pm 4.0 \pm 6.7$	$22.6 \pm 3.5 \pm 5.6$	$349\pm30\pm122$	$13.0 \pm 2.2 \pm 4.7$	$2.1\pm0.8\pm1.1$
	tt+ single top	$3.4 \pm 1.6 \pm 1.6$	5.9 ± 2.0 ± 2.2	$425\pm39\pm84$	$4.0 \pm 1.3 \pm 2.0$	$5.7 \pm 1.8 \pm 1.9$
	OCD multi-jet	0.22 ± 0.06 ± 0.24	0.92 ± 0.12 ± 0.46	34 ± 2 ± 29	0.73 ± 0.14 ± 0.50	$2.10 \pm 0.37 \pm 0.82$
	Total	$62.4 \pm 4.4 \pm 9.3$	54.9 ± 3.9 ± 7.1	$1015\pm41\pm144$	$33.9 \pm 2.9 \pm 6.2$	$13.1 \pm 1.9 \pm 2.5$
	Data	58	59	1118	40	18
εσΑ	limit (fb):	22	25	429	27	17

MSUGRA/CMSSM: $tan\beta = 10, A_0 = 0, \mu > 0$

Long decay chains

For example multi-step gluino decays

(Or any other scenario with many jets!)

1.34 fb⁻¹

Cornell University Ħ Librarv

arXiv.org 1110.2299

6

7j80

 $1.3^{+0.9}_{-0.4}$

3

3500

Jets, E_T^{miss} and 1 isolated lepton (e or μ):

	Signal Regions				Control Regions		
Selection	3JL	3JT	4JL	4JT	3J	4J	
Number of Leptons			=	1			
Lepton $p_{\rm T}$ (GeV)		> 25(20) for el	ectrons (n	nuons)		
Veto lepton $p_{\rm T}$ (GeV)	> 20(10) for electrons (muons)						
Number of jets	≥ 3		≥ 4		≥ 3	≥ 4	
Leading jet $p_{\rm T}$ (GeV)	60	80	60	60	60	60	
Subsequent jets p_T (GeV)	25	25	25	40	25	25	
$\Delta \phi(j \vec{et}_i, \vec{E}_T^{miss})$		[> 0.2	$(\text{mod}.\pi)$]	for all 3	(4) jets		
$m_{\rm T}~({\rm GeV})$		> 1	100		40 < n	$n_{\rm T} < 80$	
$E_{\rm T}^{\rm miss}~({ m GeV})$	> 125 > 240 > 140 > 200		$30 < E_{2}$	$_{\rm T}^{\rm miss} < 80$			
$E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}$	> 0.25	> 0.15	> 0.30	> 0.15	_	_	
$m_{\rm eff}~({ m GeV})$	> 500	> 600	> 300	> 500	> 500	> 300	

1.04 fb⁻¹

Cornell University Library

arXiv.org 1109.6606

Backgrounds: W+jets, ttbar (multijet negligible)

BG estimation using control regions

m_{eff} in signal regions: no excess

3JL SH	3JT SR	4JL SR	4JT SR		
71	14	41	9		
98 ± 28	18.5 ± 7.4	48 ± 18	8.0 ± 3.7		
3JL SR	3JT SR	4JL SR	4JT SR		
58	11	50	7		
64 ± 19	$\textbf{13.9} \pm \textbf{4.3}$	53 ± 16	6.0 ± 2.7		
εσA limits (fb) e: 50 14 33					
J: 36	10	31	9		
	$ \begin{array}{r} 71 \\ 98 \pm 28 \\ 3JL SR \\ 58 \\ 64 \pm 19 \\ e: 50 \\ u: 36 \end{array} $	71 14 98 ± 28 18.5 ± 7.4 $3JL SR$ $3JT SR$ 58 11 64 ± 19 13.9 ± 4.3 e: 50 14 14 $3JL SR$ $3JT SR$ 58 11 64 ± 19 13.9 ± 4.3 e: 50 14 10	71 14 41 98 ± 28 18.5 ± 7.4 48 ± 18 $3JL SR$ $3JT SR$ $4JL SR$ 58 11 50 64 ± 19 13.9 ± 4.3 53 ± 16 e: 50 14 33 $u:$ 36 10 31		

But how about moving beyond constrained models such as MSUGRA/CMSSM or minimal gauge mediation?

Simplified model interpretation

MSSM-inspired models of well-defined production and decay modes Explore dependence of free parameters Introduce complexity progressively

Simplified models for 0-lepton channel

Simplified models for 0-lepton channel

red: massless LSP green: LSP 195 GeV blue: LSP 395 GeV

1-lepton simplified models

gluino decay

squark decay

ATLAS

1-Step Decay, x=1/4

10⁻¹

800

(Colours represent cross section upper limits)

300

400

500

600

700

m_{squark} [GeV]

After first 2 years of LHC:

No SUSY so far... Nor any other BSM hints...

Time to take a step back and recap: SUSY quo vadis? Have we been too naieve?

(See talk of Giacomo Polesello tomorrow)

(L. Hall, Berkeley)

- Generalize away from (over)constrained scenarios
- Gaugino sector and sleptons: multi-leptons, photons
- Stop (and sbottom and stau) sectors (major motivation for SUSY at low energies)
- Non-``canonical" scenarios: semi-stable SUSY particles, R-parity violation

Searches aimed towards electroweak gauginos

Example 2-lepton signature (OS)

Common cuts

- Preselection (Data Quality, Trigger, Primary Vertex)
- ▶ 2 leptons: electron $p_T > 25/20$ GeV, muon $p_T > 20/10$ GeV, $m_{II} > 12$ GeV

Opposite Sign	Same Sign		Background	Obs.	95% CL
SR1 $\!$	SR1 $\not{\!\!\!E}_T > 100 \text{ GeV}$ (weak gaugino production)SR22 jets $p_T > 50, 50 \text{ GeV}, \not{\!\!\!E}_T > 80 \text{ GeV}$ (mSUGRA/CMSSM)	OS-SR1 OS-SR2 OS-SR3 SS-SR1 SS-SR2	$15.5 \pm 4.0 \\ 13.0 \pm 4.0 \\ 5.7 \pm 3.6 \\ 32.6 \pm 7.9 \\ 24.9 \pm 5.9 \\ $	$ \begin{array}{r} 13 \\ 17 \\ 2 \\ 25 \\ 28 \end{array} $	9.9 fb 14.4 fb 6.4 fb 14.8 fb 17.7 fb

Cornell University

arXiv.org 1110.6189

Library

Dileptons: interpretation

Same sign dilepton interpretation in simplified model of weak gaugino production: $\tilde{\chi}_1 \pm \tilde{\chi}_2^0$

Interpretation in GMSB

(opposite sign SR2)

vv + MET1.07 fb⁻¹

Gauge mediation with bino-like NLSP: $\tilde{\chi}^0 \rightarrow \gamma \tilde{G}$

Selection: 2 tight y E_{T} > 25 GeV, isolated, |n|<1.37 or 1.52<|n|<1.81

$E_{\rm T}^{\rm miss}$ range	Data		Predicted	background events	Expected signal events			
[GeV]	events	Total	QCD	$W/t\bar{t}(\rightarrow e\nu) + X$	Irreducible	GGM	SPS8	UED
75 - 100	11	14.7 ± 1.2	6.7 ± 0.9	7.4 ± 0.8	0.52 ± 0.10	0.8 ± 0.1	2.1 ± 0.1	0.15 ± 0.01
100 - 125	6	4.9 ± 0.7	1.6 ± 0.4	3.0 ± 0.5	0.23 ± 0.05	1.2 ± 0.1	2.5 ± 0.1	0.29 ± 0.02
> 125	5	4.1 ± 0.6	0.8 ± 0.3	3.1 ± 0.5	0.15 ± 0.01	17.2 ± 0.5	13.0 ± 0.3	9.67 ± 0.11

Searches for 3rd generation squarks

stops and sbottoms in gluino decays

direct stop or sbottom pair production

ATLAS-CONF-2011-098

Sbottom production in gluino decays

0.83 fb⁻¹

\widetilde{g} - \widetilde{g} production, \widetilde{g} -> 2b+ $\widetilde{\chi}_1^0$

≥3 jets, $p_T > 130$, 50, 50 GeV, ≥1 jet b-tagged 3 jets $\Delta \Phi$ (jet, E_T^{miss}) > 0.4 Veto events with isolated e or µ $E_T^{miss} > 130$ GeV, $E_T^{miss}/m_{eff} > 0.25$

Interpretation: gluino \rightarrow 2b + LSP

Sig. Reg.	Data (0.83 fb $^{-1}$)	Тор	W/Z	QCD	Total
$3JA (1 btag m_{eff} > 500 GeV)$	361	221_{-68}^{+82}	121 ± 61	15 ± 7	356^{+103}_{-92}
$3JB (1 btag m_{eff} > 700 GeV)$	63	37^{+15}_{-12}	31 ± 19	1.9 ± 0.9	70^{+24}_{-22}
$3JC (2 btag m_{eff} > 500 GeV)$	76	55^{+25}_{-22}	20 ± 12	3.6 ± 1.8	$79^{+\overline{28}}_{-25}$
3JD (2 btag m_{eff} >700 GeV)	12	$7.8^{+\overline{3.5}}_{-2.9}$	5 ± 4	0.5 ± 0.3	$13.0^{+5.6}_{-5.2}$

Interpretation: gluino \rightarrow sbottom + bottom

ATLAS-CONF-2011-130

Stop production in gluino decays 1.03 fb⁻¹

Analysis: b-jets plus isolated lepton signature One e or μ with $p_T > 20$ GeV At least four jets with $p_T > 50$ GeV

Cuts	\geq 4 jets	$\geq 1 b$ jet	$E_{\mathrm{T}}^{\mathrm{miss}} > 80~\mathrm{GeV}$	$m_T > 100 \ \text{GeV}$	$m_{\text{eff}} > 600 \text{ GeV}$
SM (MC)	6574 ± 1870	3096 ± 1042	881 ± 356	109 ± 55	52 ± 28
SM (d-d)					54.9 ± 13.6
data	6659	3361	989	141	74

Interpretation: gluino \rightarrow stop (\rightarrow b $\tilde{\chi}^{\pm}$) + top

Interpretation: gluino \rightarrow 2t + LSP

Direct sbottom pair production

2.05 fb⁻¹

$$\widetilde{b}_1 - \widetilde{b}_1$$
 production, $\widetilde{b}_1 \rightarrow b + \widetilde{\chi}_1^0$

Selection: 2 b-jets, $p_T > 130,50$ GeV $E_T^{miss} > 130$ GeV, $E_T^{miss}/m_{eff} > 0.25$ $\Delta \Phi(\text{jet}, E_T^{miss}) > 0.4$ Veto leptons and 3rd jet > 50 GeV

Discrimination based on con-transverse mass m_{CT} $M_{CT}^2(v_1, v_2) \equiv [E_T(v_1) + E_T(v_2)]^2 - [\mathbf{p_T}(v_1) - \mathbf{p_T}(v_2)]^2$ has an endpoint at: $(m(\tilde{b}_1)^2 - m(\tilde{\chi}_1^0)^2)/m(\tilde{b}_1)$

(JHEP 0804 (2008) 024, JHEP 1003 (2010) 030)

 ${\stackrel{400}{m_{\tilde{b}_{1}}}}$ [GeV]

1.04 fb⁻¹

Direct stop pair production

Difficult:

- low stop mass: similar to top
- high stop mass: low cross-section

Shown here: ttbar + E_{T}^{miss} analysis. Search for top quark partner T \rightarrow t + A Limits set for fermionic T (not yet for scalar)

26

Special final states

R-hadrons, R-parity violation, compressed spectra (AMSB)

Search for disappearing (kinked) tracks

1.02 fb⁻¹

paper in preparation

decaying chargino

R = 1082 mm

: hit/noise

TRT

penetrating track

R-parity violation

Search for high mass secondary vertex

Background: interactions in inner detector material

ATLAS

Prospects and challenges for 2012

2012: 10 (?) fb⁻¹ L > 5 x 10³³ cm⁻²s⁻¹ 7 or 8 TeV ? 25 ns or 50 ns bunch spacing

Pile-up: extra ``haze'' in calorimeter $\rightarrow E_T^{miss}$ resolution affected

- Triggering more and more difficult
- \rightarrow Higher thresholds?

Physics (compressed spectra) demands lower thresholds!

 \rightarrow More use of multi-object triggers

Analyses: more coverage of: stop production, electroweak gaugino sector, R-parity violation, and overall better coverage of loopholes

Summary and conclusions

MSUGRA/CMSSM : 0-lep + j's + E_{T.miss} MSUGRA/CMSSM : 1-lep + j's + E_{T miss} MSUGRA/CMSSM : multijets + E_{T.miss} Simpl. mod. (light $\tilde{\chi}_s^0$) : 0-lep + j's + $E_{T,miss}$ Simpl. mod. (light $\tilde{\chi}_s^0$) : 0-lep + j's + $E_{T,miss}$ Simpl. mod. (light $\tilde{\chi}_{s}^{0}$) : 0-lep + j's + $E_{T,miss}$ Simpl. mod. (light $\tilde{\chi}_{*}^{0}$) : 0-lep + b-jets + j's + $E_{T,miss}$ Simpl. mod. ($\tilde{g} \rightarrow t\bar{t} \tilde{\chi}^0_{-}$) : 1-lep + b-jets + j's + $E_{T,miss}$ Pheno-MSSM (light $\tilde{\chi}_{s}^{0}$) : 2-lep SS + $E_{T \text{ miss}}$ Pheno-MSSM (light $\tilde{\chi}_{s}^{0}$) : 2-lep OS_{sc} + $E_{T,miss}$ Simpl. mod. $(\tilde{g} \rightarrow q\bar{q}\tilde{\chi}^{\pm})$: 1-lep + j's + $E_{T \text{ miss}}$ GMSB (GGM) + Simpl. model : $\gamma\gamma + E_{T,miss}$ GMSB : stable $\tilde{\tau}$ Stable massive particles : R-hadrons Stable massive particles : R-hadrons Stable massive particles : R-hadrons Hypercolour scalar gluons : 4 jets, $m_{ii} \approx m_{kl}$ RPV (λ₃₁₁=0.10, λ₃₁₂=0.05) : high-mass eμ Bilinear RPV ($c\tau_{1 SP} < 15 \text{ mm}$) : 1-lep + j's + $E_{T,miss}$

SUSY

Summary and conclusions

AIL. Brolimi

o⁻¹

γ¢

ATLAS searches: wide variety of analyses, lively and active. (Note that most analyses have auxiliary information: web or HEPDATA)

Detector operating very well

No excesses seen so far, limits set

NEWK

analyses presented today: direct sbottom pair production simplified models 0-lepton analysis dilepton analysis 2011 data disappearing high p_T tracks

Future emphasis: 3rd generation, multileptons, electroweak gauginos, difficult final states, reach to higher masses,...

Stable massive particles : R-hadrons L=34 pb⁻¹ (2010) (arXiv:1103.1984) 294

Outlook for 2012: 10 fb⁻¹, perhaps 8 TeV

Hypercolour scalar gluons : 4 jets, m_{ii} ≈ m

sgluon mass (excl:*m*_{so} < 100 GeV, *m*_{so} ≃ 140 ± 3 GeV

Challenges: triggering, pile-up

Bi car RPV (ct₁₅₀ < 15 mm) covering the enormous variety of SUSY signatures

S

Dileptons

Background rejection by flavour subtraction (e.g. ttbar reduction)

s –	N(e [±] e [∓])	$\beta N(\mu^{\pm}\mu^{\mp})$	$N(e^{\pm}\mu^{\mp})$
0 =	$\overline{\beta(1-(1-\tau_{\theta})^2)}$	$\frac{1}{(1-(1-\tau_{\mu})^2)}$	$1 - (1 - \tau_{\theta})(1 - \tau_{\mu})$
	<u> </u>		<u> </u>

same flavour

different flavour

Flavour Subtraction

SR1 $\not{\!\!\! E}_T > 80 \text{ GeV}$ $Z \text{ veto: } 80 > m_{II} || m_{II} > 100 \text{ GeV}$ **SR2** 2 jets $p_T > 20, 20 \text{ GeV}, \not{\!\!\!\! E}_T > 80 \text{ GeV}$

SR3 $\not{\!\! E}_T > 250 \text{ GeV}$

OS-FS [FS-SR1]	$e^{\pm}e^{\mp}$	$e^{\pm}\mu^{\mp}$	$\mu^{\pm}\mu^{\mp}$	OS-FS [FS-SR2]	$e^{\pm}e^{\mp}$	$e^{\pm}\mu^{\mp}$	$\mu^{\pm}\mu^{\mp}$
$t\bar{t}$	198 ± 21	581 ± 50	418 ± 31	$t\bar{t}$	$220{\pm}25$	624 ± 64	437 ± 37
Z/γ^* +jets	86 ± 7	41±7	41 ± 11	Z/γ^* +jets	$46{\pm}12$	29 ± 7	38 ± 6
Fakes	5 ± 3	30 ± 9	22 ± 8	Fakes	2 ± 2	32 ± 10	19 ± 8
Dibosons	14 ± 3	34 ± 5	32 ± 4	Dibosons	8±3	11 ± 5	15 ± 5
single top	13 ± 1	41±4	37 ± 3	single top	10 ± 2	32 ± 4	27 ± 3
Standard Model	$316{\pm}21$	727 ± 52	549 ± 34	Standard Model	286 ± 28	728 ± 65	537 ± 38
Cosmic rays	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	Cosmic rays	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$
Observed	344	750	551	Observed	336	741	567

	\mathcal{S}_{obs}	$ar{\mathcal{S}}_b$	RMS
FS-SR1	$131.6 \pm 2.5 (sys)$	118.7 ± 27.0	48.6
FS-SR2	$142.2 \pm 1.0 (sys)$	67.1 ± 28.6	49.0
FS-SR3	-3.06 ± 0.04 (sys)	0.7 ± 1.6	4.5

	$S > S_{obs}$ (%)	Limit $\bar{\mathcal{S}}_s$ (95% CL)
FS-SR1	39	94
FS-SR2	6	158
FS-SR3	79	4.5

Trileptons

ATLAS-CONF-2011-039

(2010 data)

Multilep. events	All	eee	eeµ	еµµ	μμμ
tī	0.68±0.16	0.032±0.016	0.24±0.07	0.31±0.08	0.096 ± 0.030
Z backgrounds	15.6±1.3	3.8±0.8	1.60 ± 0.34	7.9±1.0	2.4±0.4
Other backgrounds	0.28±0.13	0.02±0.14	0.03 ± 0.06	0.21±0.09	0.01 ± 0.11
Total SM	16.6±1.3	3.8±0.8	1.9±0.4	8.4±1.0	2.5±0.4
Data	19	2	1	10	6

 p_T lepton 1 & 2 > 20 GeV p_{T} lepton 3 > 20 GeV (e) 10 GeV (µ)

Final cuts: 2 jets > 50 GeV E_{τ}^{miss} > 50 GeV

300

36

Search for stopped R-hadrons

Total Integrated Luminosity [pb⁻]

10⁴

10³

10

10

1

10

10⁻² 10⁻³

10-4

10-5

24/03

Dense material (calorimeter) could stop R-hadron Decay at much later time, e.g. uncorrelated with LHC beam

Take data outside LHC bunch crossings Backgrounds: cosmics, noise, protons in ``empty" bunch crossings, beam halo

Before muon segment veto

First approach: inner detector + calorimeter, no muon requirement Motivation: R-hadrons (stops, gluinos), might be neutral after calorimeter

Analysis uses pixel dE/dx combined with TileCal time (= β) measurement, 2010 data

Long-lived particles: search in the muon spectrometer

arXiv.org 1106.4495

Large ATLAS muon system with good timing resolution Refit muon tracks, leaving velocity β as free parameter Two analyses: sleptons (e.g. semi-stable stau NLSP in GMSB), R-hadrons

