Benchmarks

	MSSM-A	MSSM-B	$\mathrm{E}_{6} \mathrm{SSM}$-A	E_{6} SSM-B	
$\tan \beta$	9.9	39.2	1.42	1.77	
λ	-		0.65	-0.4767	
s			3099	3187	
μ	-112.6	1578	(1425)	(-1074)	
$A_{t}=A_{b}=A_{t}$	-724.6	-566.1	-2684	476.2	
M_{A}	1593	302.5	2791	2074	
M_{1}	150	150	150	150	$\stackrel{\square}{4}$
M_{2}	285	285	300	300	
M_{1}			151	151	
$m_{\bar{g}}$	800.3	800.2	800.0	800.0	
$m_{\overline{\chi_{M 1}}}$	94.1	148.9	148.6	151.2	
$m_{\chi_{\text {M }}}$	128.8	302.8	294.6	303.7	
$m_{\chi_{\text {M }}^{\text {M }}}$	163.0	1580	1434	1066	$\bar{\square}$
$m_{\chi_{\text {ma }}}$	323.5	1581	1452	1068	$\stackrel{\text { ® }}{ }$
	112.2	302.8	298.6	300.9	
$m_{\chi \text { 坡 }}$	323.5	1582	1427	1076	
	-		1040	1110	$\bar{\square}$
$m_{i=1}$	-		1215	1254	
$m_{\chi_{\text {elt }}}$	-		43.5	45.2	
$m_{\bar{X}_{\underline{E} 2}^{0}}^{0}$	-		48.6	53.2	
	-		131.3	141.6	
$m_{\chi_{\text {eq }}}$	-	-	163.6	187.4	$\overline{8}$
$m_{\chi_{\text {e }}^{0} 5}^{00}$	-		197.0	227.8	$\stackrel{\text { ® }}{ }$
$m_{\bar{X}_{\text {EG }}}$	-		224.3	265.6	
$m_{\text {X }}^{\text {E1 }}$	-		119.9	122.7	
$m_{\chi \pm 2}^{ \pm}$			185.8	225.1	
m_{h}	120.4	119.0	133.8	116.3	
$P(I=1)$	0.09847	0.188	< 10^{-5}	< 10^{-5}	
P($1=2)$	0.4705	0.812	0.01524	0.1723	
$P(1=3)$	0.387	0	0.2336	0.7986	
P($1=4)$	0.04387	0	0.7512	0.02915	
$P(I=5)$	< 10^{-4}	0	$<10^{-7}$	0	
Ωh^{2}	0.01513	0.00816	0.0006842	0.0006937	
$\sigma_{S I}$	2.35×10^{-8}	0.3808×10^{-8}	9.35×10^{-8}	16.35×10^{-8}	亏

Table: Benchmarks chosen from the parameter scans presented Figure 1 and Table 1. The $\tilde{\chi}_{M i}^{0(\pm)}$ are MSSM-like states, the $\tilde{\chi}_{U i}^{0}$ are USSM-like states, being mainly mixtures of \tilde{S} and \tilde{B}^{\prime}. The $\tilde{\chi}_{E i}^{0(\pm)}$ are states introduced by the inert sector of $\mathrm{E}_{6} \mathrm{SSM}$. The scale for squark and slepton masses are $M_{S}=2 \mathrm{TeV}$ in all benchmarks.

MSSM-A: (Primary chain) MSSM-A: (Secondary chain) MSSM-B: (Primary chain) MSSM-B: (Secondary chain)

${ }_{-6}{ }_{6}^{5} S M-A$:

E_{6} SSM-B:

Figure: Feynman diagrams for the leading gluino decay chains for each benchmark. In $\mathrm{E}_{6} \mathrm{SSM}-\mathrm{A}$ the two lightest neutralinos are closely degenerate and the last radiated Z-boson is produced off-shell.

Event analysis

Since the $\mathrm{E}_{6} \mathrm{SSM}$ introduces new neutralinos, naturally lighter than the MSSM LSP, the gluino decay chains will be longer than the MSSM's in general. This is confirmed and illustrated by the parameter scans and benchmarks above. An effect of longer decay chains is that there will be less missing momenta in collider experiments. Another important feature is the increase in lepton multiplicity as well as jet multiplicity. An effective variable for distinguishing models with different gluino decay chain lengths, like the MSSM and the $\mathrm{E}_{6} \mathrm{SSM}$ is $p_{T} / M_{\text {eff }}$ or even better $म_{T} / \sum_{\text {visible }}\left|p_{T}^{\text {visible }}\right|$

Number of leptons
Figure: Lepton multiplicity before selection cuts. $p_{T}>15 \mathrm{GeV}$ was used for lepton identification

Figure: Missing transverse momentum, $\boldsymbol{\phi}_{T}$, the effective mass, $M_{\text {eff }}$ and their ratio before selection cuts.

Table: ATLAS style cuts: The efficiency (fraction of events rem

Figure: The effective mass after 7 ATLAS style cuts

Figure: The effective mass after 8 CMS style cuts

Conclusions

Careful analysis has to be made to distinguish SUSY models. The models studied here are very different but conventional cuts and the effective mass makes them blend into each other. Cuts on ϕ_{T} and $\phi_{T} / M_{\text {eff }}$ or equivalents are severe for models with long decay chains like the $\mathrm{E}_{6} \mathrm{SSM}$. The $\mathrm{E}_{6} \mathrm{SSM}$ has large visible and small missing p_{T}. The effect of these features cancels in $M_{\text {eff }}$, while it is enhanced in $\phi_{T} / \sum_{\text {visible }}\left|p_{T}^{\text {visible }}\right|$. Requiring leptons is also an important task when identifying models like the $\mathrm{E}_{6} \mathrm{SSM}$.

