Analytic Calculations In Multiperipheral Model

Igor Sharf¹, <u>Andrii Tykhonov²</u>, Maksym Delyiergyiev², Grygorii Sokhranny¹ Natalia Podolyan¹ and Vitaliy Rusov^{1*}

¹Odessa National Polytechnic University, Odessa, Ukraine, ²Jozef Stefan Institute, Ljubljana, Slovenia

Introduction

A new calculation method developed in [1] for hadron-hadron scattering cross-section .

This method based on so-called "*constraint maximum point*" [1] of scattering amplitude considering restrictions imposed by energy-momentum conservation law.

Furthermore, derived that the contribution of longitudinal momenta into the virtualities is vital and results in the new mechanism of cross-section growth, not considered in Reggebased approaches [2].

Mechanism of Virtuality Decrease

The increasing of $(\sqrt{S}/M)^{\frac{2}{n+1}}$ results in the growth of scattering amplitude maximum and therefore the growth of cross-section with the growth of energy \sqrt{S} .

If not too small *n*, the value of $(\sqrt{S}/M)^{\frac{2}{n+1}}$ is close to 1 even at high energy ($\sqrt{S} \gg M$). Thus, the virtuality can't be reduced to transverse momentum squared, as is usually supposed in Regge-based approaches.

Conclusions

The analytic expression obtained for scattering amplitude in the point of constrained maximum.

The result shows difference in multiperipheral model from that based on multi-Regge kinematics.

Quasi-analytic calculation approach provided for interference contributions.

The inelastic and total scattering cross-section as a function of

The new term "Mechanism of virtuality decrease" coined for it.

Objective

First, obtain analytic expression for scattering amplitude at the point of constrained maximum.

Second, develop analytic approach considering the interference contributions at high multiplicity of final-state particles.

Constrained maximum point of scattering amplitude

At the point of constraind maximum rapidies of final state particles form an arithmetic progression [1]:

Interference contributions

Partial cross-section is a sum of n! interference contributions:

Cross-section of pp inelastic process with formation of n secondary particles. Represented as a sum of "cut" diagrams.

Each interference contribution corresponds to a point on n-1 - dimensional sphere [1]:

energy of colliding particles (observed experimentally) can be qualitatively represented due to variation single parameter – coupling constant of considered φ^3 model.

The more accurate quantitative presentation of empirical data requires the utilization of more realistic model (QCD). This is a subject of further investigation.

Proton-proton inelastic scattering cross-section as a function of energy of colliding particles in c.m.s. frame.Theory (blue line) VS Experiment (red squares)

Representation of protonproton scattering amplitude as a "comb" Feynman diagram Y : particle rapidity X : position on the "comb"

Scattering amplitude at the point of constrained maximum can represented analytically [1]:

 $A^{(0),n} = \left(1 + a\left(\sqrt{s}, n\right)\right)^{-1} \left(1 + b\left(\sqrt{s}, n\right)\right)^{-(n-1)} \exp\left(c\left(\sqrt{s}, n\right)\right)$

 $a\left(\sqrt{s},n\right) = \left(\frac{1}{\left(\sqrt{s}/M\right)^{\frac{2}{n+1}}-1}\right)$

Each point corresponds to one of interference "cut" diagrams for " $2 \rightarrow 4$ " scattering process

Interference contribution points are uniformly distributed on the sphere. That evolves the sum of interference contributions to the integral:

 $\sigma_n = \int_{-1}^{1} \sigma'_n(z) \rho(z) dz$

 $z = \cos(\theta), \ \theta$: angle between the vector, directed to "interference contribution point" on the sphere and the vector directed to the north pole of the sphere

magnitude of interference contribution as a function of *z*density function for interference contributions

Proton-proton **total** scattering cross-section as a function of energy of colliding particles in c.m.s. frame. Theory (blue line) VS Experiment (red squares)

S : squared energy of colliding particles; *M* : proton mass

The four-momentum's scalar square (in Minkowsky space) for each virtual particle on the "comb" satisfies [1]:

 $(p_i - p_{i+1})^2$ - "virtuality"

The relevance of this approach has been proved in [1] for n=8-10. For that case of *n* the interference contributions can be evaluated directly.

References

 $\sigma'_{n}(z)$

 $\rho(z)$

- I.Sharf et al. "Mechanisms of hadron inelastic scattering cross-section growth in multiperipheral model within the framework of perturbation theory", *Accepted to Journal Of Modern Physics*, arXiv:0711.3690[hep-ph], arXiv:0605110[hep-ph], arXiv:0912.2598[hep-ph]
- 2. E.A Kuraev, L.N Lipatov, and V.S Fadin, "Multi Reggeon processes in the Yang-Mills theory", *Sov. Phys. JETP*, 44:443-450, 1976

* Correspondence author: siiis@te.net.ua

HCP 2011, November 17 2011, Paris, France