# Diboson Physics at the Tevatron

Aidan Robson University of Glasgow for the CDF and D0 Collaborations HCP, 15 November 2011









#### Dibosons





EM gauge invariance and C and P conservation

→ 5 independent TGCs for WW { $g_1^Z$ ,  $\kappa_Z$ ,  $\kappa_\gamma$ ,  $\lambda_Z$ ,  $\lambda_\gamma$ }

Wy sensitive to  $\kappa_{\gamma}$ ,  $\lambda_{\gamma}$ WZ sensitive to  $g_1^{Z}$ ,  $\kappa_Z$ ,  $\lambda_Z$ 

Standard Model:  $g_1^{Z} = \kappa_Z = \kappa_\gamma = 1$  so consider  $\Delta g_1^{Z}$ ,  $\Delta \kappa_Z$   $\lambda_Z = \lambda_\gamma = 0$  $\Delta a(\hat{s}) = \frac{\Delta a_0}{(1 \pm \hat{s}/\Lambda_{2-1}^2)^n}$ 

ZγZ vertex: Zγ sensitive to  $h_3^{Z}, h_3^{\gamma}, h_4^{Z}, h_4^{\gamma}$ ZZγ vertex: ZZ sensitive to  $f_4^{Z}, f_4^{\gamma}, f_5^{Z}, f_5^{\gamma}$  all zero in SM

#### Tevatron



# W and Z selection





95% CL limits ( $\Lambda$ =2TeV) -0.4 <  $\Delta \kappa_{\gamma}$  < 0.4 -0.08 <  $\lambda_{\gamma}$  < 0.07

 $\sigma(p\overline{p} \rightarrow W\gamma + X \rightarrow \ell \gamma + X) = 7.6 \pm 0.4 \text{ (stat)} \pm 0.6 \text{ (sys) pb}$   $E_{\tau}(\gamma) > 15 \text{GeV}, \ \Delta R(\ell \gamma) > 0.7 \qquad (SM: 7.6 \pm 0.2 \text{ pb})$ Accepted by Phys. Rev. Lett.



Diboson Physics at the Tevatron







Ζγ



Phys. Lett. B 671 (2009) 349





## WW









### WW/WZ resonances











 $ZZ \rightarrow \ell\ell \nu \nu$ 





$$\sigma(p\overline{p} \to ZZ) = 1.45^{+0.45}_{-0.42}(stat.)^{+0.41}_{-0.30}(syst.) \text{ pb}$$



ZZ→ℓℓjj







 $WW/WZ \rightarrow \ell \nu jj$ 





 $WW/WZ \rightarrow \ell \nu jj$ 







TGCs

D0 Wγ 4.2/fb -0.4 <  $\Delta \kappa_{\gamma}$  < 0.4 -0.08 <  $\lambda_{\gamma}$  < 0.07 D0 WZ 4.1/fb ( $\Lambda$ =2TeV) -0.400 <  $\Delta \kappa_Z$  < 0.675 -0.077 <  $\lambda_Z$  < 0.093 -0.056 <  $\Delta g_1^Z$  < 0.154 All 95% CL

D0 1/fb Combination -0.29 <  $\Delta \kappa_{\gamma}$  < 0.38 -0.08 <  $\lambda_{Z}$  < 0.08 -0.07 <  $\Delta g_{1}^{2}$  < 0.16

D0 WW 1/fb ( $\Lambda$ =2TeV) -0.54 <  $\Delta \kappa_{\gamma}$  < 0.83 -0.14 <  $\lambda_{\gamma} = \lambda_Z$  < 0.18 -0.14 <  $\Delta g_1^Z$  < 0.30 D0 WW/WZ  $\rightarrow \ell v jj$  1/fb ( $\Lambda$ =2TeV) -0.44 <  $\Delta \kappa_{\gamma}$  < 0.555 -0.10 <  $\lambda_{Z}$ = $\lambda_{\gamma}$  < 0.11 -0.12 <  $\Delta g_{1}^{Z}$  < 0.20

CDF Z $\gamma$  5.1/fb ( $\Lambda$ =1.5TeV) -0.020 <  $h_3^2$  < 0.021 -0.0009 <  $h_4^2$  < 0.0009 -0.022 <  $h_3^\gamma$  < 0.020 -0.0008 <  $h_4^\gamma$  < 0.0008

D0 ZZ->4L 1/fb ( $\Lambda$ =1.2TeV) -0.28 <  $f_4^{\ Z}$ < 0.28 -0.26 <  $f_4^{\ \gamma}$  < 0.26 -0.31 <  $f_5^{\ Z}$  < 0.29 -0.30 <  $f_5^{\ \gamma}$  < 0.28

## Outlook



# Outlook

• Rich programme of Tevatron diboson physics

- Huge advances over ten years of Run 2
  - testing standard model
  - probing for new physics
  - underpinning symmetry-breaking searches









 $\sigma(p\bar{p} \rightarrow Z\gamma \rightarrow vv\gamma) = 32 \pm 9(\text{stat+sys}) \pm 2(\text{lumi}) \text{ fb}$  $|\eta_{\gamma}| < 1.1; E_{\tau}(\gamma) > 90 \text{GeV} \qquad (\text{SM: } 39 \pm 4 \text{ fb})$ 

Phys. Rev. Lett. **102** (2009) 201802





Limits, Expected Limits and Probabilities for Obtaining Observed Limits (tex)

| CDF Preliminary Results at $3.6 \text{fb}^{-1}$ |               |                |                          |
|-------------------------------------------------|---------------|----------------|--------------------------|
| Λ                                               | $\lambda^Z$   | $\Delta g_1^Z$ | $\Delta \kappa^{\gamma}$ |
| $2.0 \mathrm{TeV}$                              | (-0.14, 0.15) | (-0.22, 0.30)  | (-0.57, 0.65)            |
| $1.5 \mathrm{TeV}$                              | (-0.16, 0.16) | (-0.24, 0.34)  | (-0.63, 0.72)            |
| CDF Expected Limits at $3.6 \text{fb}^{-1}$     |               |                |                          |
| Λ                                               | $\lambda^Z$   | $\Delta g_1^Z$ | $\Delta \kappa^{\gamma}$ |
| 2.0TeV                                          | -0.05 - 0.06  | -0.08 - 0.15   | -0.20 - 0.27             |
| $1.5 \mathrm{TeV}$                              | -0.05 - 0.07  | -0.09 - 0.17   | -0.23 - 0.31             |
| Probability of Observed Limits                  |               |                |                          |
| Λ                                               | $\lambda^Z$   | $\Delta g_1^Z$ | $\Delta \kappa^{\gamma}$ |
| 2.0TeV                                          | 7.1%          | 7.3%           | 7.2%                     |
| 1.5TeV                                          | 7.6%          | 7.4%           | 7.3%                     |

31



figure\_10014

### $ZZ \rightarrow 4\ell$

Very general goodness-of-fit test: p-value is fraction of PEs that have KS distance greater than that of observed distribution: 0.14

More powerful test statistic for resonance search: ratio of bck and bck+sig likelihoods (bck= SM M(ZZ); sig= Gaus with width = detector resolution at mean) p-value is fraction of PEs that have likelihood ratio  $L_{SM}/L_{SM+G}$  lower than data:  $(1-2)x10^{-3}$ 



Wed Jul 13 21:50:39 2011

For  $P_{T}$ : no physics model, so p-value is fraction of PEs sampled from SM distribution that have KS distance greater than that observed:  $(1-2)\times10^{-4}$ 



WW/WZ  $\rightarrow \ell \nu j j$ 



95% CL limits,  $\Lambda$ =2TeV -0.44 <  $\Delta \kappa_{\gamma}$  < 0.55 -0.10 <  $\lambda_{Z}$ = $\lambda_{\gamma}$  < 0.11 -0.12 <  $\Delta g_{1}^{Z}$  < 0.20

Phys. Rev. D 80 (2009) 053012