

W Mass Results at Tevatron and LHC

Alex Melnitchouk on behalf of ATLAS, CDF, CMS, DØ, and LHCb Collaborations University of Mississippi

HCP2011, Paris, France, November 15, 2011

Electroweak Symmetry Breaking

- W (and Z) bosons are interesting objects to study: mass, width, production and decay properties
- Even more interesting to find out how exactly these objects came to be

- What is the mechanism by which W and Z bosons acquired their mass ?
- Precise measurements of M(W) tell us about Electroweak Symmetry Breaking ₂

M(W) Motivation

• W boson mass is an important Standard Model parameter related to G_F , α_{EM} , and M_z via

$$M_{W}^{2} = \frac{\left(\frac{\text{tree level}}{\sqrt{2}G_{F} (1 - M_{W}^{2}/M_{Z}^{2})} (1 - \Delta r)\right)}{\left(\sqrt{2}G_{F} (1 - M_{W}^{2}/M_{Z}^{2})} (1 - \Delta r)\right)}$$

• Δr term represents (large!) higher-order corrections to M_W

Constraining Standard Model

- Since M_W , M_{top} , and M_{Higgs} are all related via radiative corrections, we can constrain M_{Higgs} with precision measurements of M_W and M_{top}
- Measurements of M_W and M_{top} overlaid with theory predictions for the Higgs boson

Higgs limit from EW fits

Measuring M(W)

- Cannot reconstruct M(W) directly (missing neutrino p_z)
- Extract it from observables that are sensitive to M(W)

$$M_{T} = \sqrt{2p_{T}^{e} p_{T}^{\nu} (1 - \cos \phi_{e\nu})} \qquad p_{T}^{e} \qquad p_{T}^{\nu} \left(\mathbf{E}_{T} = \left| \mathbf{\vec{p}}_{T}^{e} + \mathbf{\vec{p}}_{T}^{recoil} \right| \right)$$

- due to complicated detector effects analytical computation impossible
- determine M(W) via template fit (need Fast Monte Carlo model of detector effects)
- The observables are Lorentz-invariant only longitudinally: sensitive to transverse motion of W boson
 - need good model of W boson production

W→ev Event: Theory and AnalysisView

Analysis: describe W \rightarrow event in terms of recoil and electron systems to achieve $\Delta M_W/M_W \approx 0.5 \times 10^{-3}$ Required detector electron $\sim 0.3 \times 10^{-3}$ response precision: hadronic recoil $\sim 1\%$

Lepton Energy Calibration

CDF

- Good tracker resolution
- Linearity
- Good calibration even based on first-principles
- Transfer precise tracker calibration to calorimeter
- Muon and electron channels

Lepton Energy Calibration

CDF

- Good tracker resolution
- Linearity
- Good calibration even based on first-principles
- Transfer precise tracker calibration to calorimeter
- Muon and electron channels

DØ

- Tracker volume is small
- Very good calorimeter
- First-principles understanding of EM showers
- Final calibration: LEP M(Z)
- Electron channel only

Final M(W) Calibration (DØ)

- Linear response model : E_measured(e) = $\alpha \times E_true(e) + \beta$ $\alpha \rightarrow scale \qquad \beta \rightarrow offset$
- Use $Z \rightarrow$ ee electrons to constrain α and β (precision limited by statistics)
- Calibrate to $M_Z (\pm 2 \text{ MeV from LEP})$
- Two observables to fit the data
 - $Z \rightarrow$ ee invariant mass
 - f_Z variable "scans" the response as a function of energy

 $\alpha = 1.0111 \pm 0.0043$ $\beta = -0.404 \pm 0.209 \text{ GeV}$ correlation = -0.997

⇒ dominant systematic error, 100 % correlated between three observables

$$f_{Z} = (E(e1)+E(e2))(1-\cos(\gamma_{ee}))/m_{Z}$$

9

Event Display of DØ W→ev Candidate Event

Recoil Model (DØ)

Recoil in Fast MC: $\vec{u}_T = \vec{u}_T^{\text{Hard}} + \vec{u}_T^{\text{Soft}} + \vec{u}_T^{\text{Elec}} + \vec{u}_T^{\text{FSR}}$

Mass fits: $M(Z), M_T(W)$

$m(Z) = 91.185 \pm 0.033 \text{ GeV}$ (stat)

remember that Z mass value from LEP was input to electron energy scale calibration, PDG: $M(Z) = 91.1876 \pm 0.0021$ GeV $m(W) = 80.401 \pm 0.023 \text{ GeV}$ (stat)

Mass fits: P_T(e), MET

 $m(W) = 80.402 \pm 0.023 \text{ GeV}$ (stat)

 $m(W) = 80.400 \pm 0.027 \text{ GeV}$ (stat)

M(W) Uncertainties, MeV (DØ)

Source		m _T	$\mathbf{p}_{\mathbf{T}}^{e}$	E _T	
Statistical		23	27	23	
Systematic - Experimental					
Electron energy response		34	34	34	
Electron energy resolution		2	2	3	
Electron energy non-linearity		4	6	7	
Electron energy loss differences		4	4	4	
Recoil model		6	12	20	
Efficiencies		5	6	5	
Backgrounds		2	5	4	
Experimental Subtotal		35	37	41	
Systematic – W production and decay model					
PDF	in the near future	$\overline{10}$	11	11	
QED	expect reduction of experimental errors and increased importance of theoretical errors	7	7	9	
Boson pT		2	5	2	
W model subtotal		12	17	17	
Systematic Total		37	40	44	1

Lepton Energy Calibration (CDF)

- QED corrections
 - magnetic field non-uniformity

CDF M(W) Analysis

Electron Channel

Muon Channel

Results

Tevatron ElectroWeak Working Group http://tevewwg.fnal.gov Combination performed with B.L.U.E. method L. Lyons et al, NIM in Phys. Res. A **500**, 391 (2003)

A. Valassi, NIM in Phys. Res. A **500**, 391 (2003)

CDF RunII 0.2 fb⁻¹ PRL 99, 151801 (2007)
PRD 77, 112001 (2008)80.413 \pm 0.034 (stat.) \pm 0.034 (syst.) GeV80.413 \pm 0.048 GeV17

Current M(W) Effort at the Tevatron

- More data are being analyzed at CDF and $D\emptyset$
- Main new challenges
 - "busier" events (recorded at higher instantaneous luminosities)
 - need for more careful treatment of systematic effects that used to be swamped by statistical fluctuations
- With the data currently analyzed dominant errors are reduced by a factor of 2-3 compared to published analyses

Electron scale error at DØ

W Production at LHC

- $P_T(W+)$ and $P_T(W-)$ spectra are different
- c-quark and s-quark contribute significantly

Importance of knowing P_T(W)

 $P_T(W)=0$, no detector effects $P_T(W)$ included detector effects added

 $p_{T}(e)$ most affected by $p_{T}(W)$

$$M_T = \sqrt{2E_T^l \not\!\!E_T (1 - \cos \Delta \phi)}$$

M_T most affected by measurement of missing transverse momentum

P_T(W) Measurement (ATLAS)

• Impressive result with 31pb⁻¹

P_T(W) Measurement (ATLAS)

- Impressive result with 31pb⁻¹
- W mass measurement is mostly interested in low end [<]
 - lower hadronic energy
 - better theory description
- Serious step towards precision needed for W mass input

plan to split in $P_T(W+)$ and $P_T(W-)$ and use together with $P_T(Z)$ measurement as feedback to W mass measurement

P_T(W) Measurement (ATLAS)

W Production Asymmetry, PDFs

- LHC: a valence quark from proton and a sea quark from proton
- W production asymmetry is governed by the PDFs ⇒ constrain the PDFs with asymmetry measurements

Lepton Asymmetry from LHCb

probing smaller x region than other experiments

Lepton Charge Asymmetry at LHC

M(W) Prospects with all Tevatron Data

- Electroweak fits favor light Higgs
- Currently

- most probable Higgs mass value = 92 GeV

- excluded above 161GeV @95% CL
- Under the following example scenario*

 $\Delta M_{W} : 23 \text{ MeV} \rightarrow 15 \text{ MeV}$ central values (M_W, M_{top}) do not move $\Delta M_{top} : 1 \text{ GeV}$

- Higgs:
 - most probable value = 71 GeV
 - excluded above 117GeV @95% CL
 - (114.4 from current direct searches)

*Pete Renton, ICHEP2008

can be achieved at the Tevatron with the full dataset !!!

Summary

- W Mass measurement is crucial for constraining the Standard Model
- DØ made most precise measurement of the W boson mass from a single experiment
- Comparable results from CDF
- World average is now 23 MeV
- More Tevatron data are being analyzed, expecting significant improvements in precision soon
- With full Tevatron dataset expect 10-15 MeV precision
- Comparable ultimate precision expected from LHC

BACKUP SLIDES

Effect of Corrections on M(W)

Recoil Calibration

Final adjustment of free parameters in the recoil model is done *in situ* using balancing in $Z \rightarrow$ ee events and the standard **UA2 observables:**

in the transverse plane, use a coordinate system defined by the bisector of the two electron momenta.

31

$Z \rightarrow e e and W \rightarrow e v$

Data in red MC in blue

Electron Energy Resolution

Electron energy resolution is driven by two components: sampling fluctuations and constant term

Sampling fluctuations are driven by sampling fraction of CAL modules (well known from simulation and test-beam) and by un-instrumented material. Amount of material has been quantified with good precision.

Constant term is extracted from $Z \rightarrow ee$ data (fit to observed width of the Z peak).

Result: $C = (2.05 \pm 0.10) \%$ in excellent agreement with Run II design goal (2%)

Photons

Leading EW effects: 1st and 2nd FSR photons -- modeled with PHOTOS. Effect of full EW corrections: compare W/ZGRAD in full EW mode with FSR-only mode Quality of FSR model: compare PHOTOS with W/ZGRAD in FSR-only mode 34

Backgrounds to W→ev

- QCD (di-jet) $(1.49 \pm 0.3 \%)$: one jet fakes as an electron
 - determined from QCD data
- $Z \rightarrow ee (0.80 \pm 0.01 \%)$: one electron lost in ICR(between central and end cap)
 - determined from $Z \rightarrow ee$ data
- W $\rightarrow \tau v (1.60 \pm 0.02 \%)$: Taus decaying into evv
 - determined from GEANT (full) MC
- For all 3 observables: estimated backgrounds are added to Fast MC simulated signal

W Boson Mass and Top Quark Mass

- Higgs boson mass is sensitive to M(W) and M(top)
- For equal contribution to the Higgs mass uncertainty need: $\Delta M_W \approx 0.006 \Delta M_{top}$
- Current Tevatron average $\Delta M_{top} = 1.3 \text{ GeV}$
- \Rightarrow Would need: $\Delta M_w = 8 \text{ MeV}$ (currently have: $\Delta M_w = 23 \text{ MeV}$)

Lepton Charge Asymmetry

W rapidity cannot be reconstructed on event-by-event basis due to non-measurable longitudinal neutrino momentum

E.L. Berger, F. Halzen, C.S. Kim and S. Willenbrock; Phys. Rev. D40 (1989) 83