Top quark mass and property measurements at Tevatron

Hyun Su Lee

Korea University (visiting to U of Chicago) On behalf of the CDF and D0 collaborations

Hadron Collider Physics 2011

HCP 2011, Hyunsu Lee, Korea University

Top production and decay

Tevatron and Top Physics

- Tevatron was shutdowned
 Have > 10 fb⁻¹ in each experiment
- LHC accumulated more than 5fb⁻¹ of data

Order of magnitude larger top events

- Tevatron top physics
 - Best result
 - Well known detector, small systematics (mass)
 - Uniqueness
 - ppbar collider, different energy (Forward backward asymmetry, color reconnection)
 - Complementary

□Many properties and searches

What we are interested in?

This talk

Top quark mass

- Top quark mass is not predicted by SM
- Can constrain SM Higgs boson mass
 - Important contribution in radiative correction of W
 - Important test of SM

Jet energy scale (JES)

HCP 2011.

CDF lepton+jets

- 5.6 fb⁻¹ data 1263 events
 - We select events having 1 lepton (p_T>20GeV/c), four jets (E_T>20GeV), and large missing energy (MET>20GeV)
 - At least one b-tagged jet
 - Additional NN based selection
- Matrix element (ME) technique
 - Transfer function was parameterized by eta and jet mass for b-jet and light jet
- In situ JES calibration
- This is the most precise top quark measurement to date PRL 105 (2010) 252001

$\begin{array}{l} 173.0 \pm 0.7 (\text{stat}) \pm 0.6 (\text{JES}) \pm 0.9 (\text{syst}) \ \text{GeV/c}^2 \\ = 173.0 \pm 1.2 \ \text{GeV/c}^2 \end{array}$

HCP 2011,

CDF lepton+jets

		2 ² /ndf	23.83 / 13
• 5.6 fb ⁻¹ d <u>ata – 1263 events $\sqrt{2}$</u>			0.03273
	$CDF Run II Preliminary, 5.6 fb^{-1}$		0.9689±0.009212
	Systematic source	Systematic uncertainty (GeV/c^2)	
(p _T >2	Calibration	0.10	
large	m MC generator	0.37	
💠 At lea	ISR and FSR	0.15	
tibba 🚸	Residual JES	0.49	185
	b-JES	0.26	(GeV/c ²)
Matrix e	Ele Lepton P_T	0.14	
Trans	sfe Multiple hadron interactions	0.10	
and i	et PDFs	0.14	
	Background modeling	0.34	
• IN SITU .	Gluon fraction	0.03	
• This is	Color reconnection	0.37	
modeu	Total	0.88	175
m _t (GeV/c ²)			
$173.0 \pm 0.7(\text{stat}) \pm 0.6(\text{JES}) \pm 0.9(\text{syst}) \text{ GeV/c}^2$			
=173.0 ± 1.2 GeV/c ²			

HCP 2011,

D0 dilepton channel

- 5.4 fb⁻¹ data 479 events
 - We select events having 2 lepton (p_T>15GeV/c), at least two jets (E_T>20GeV), and large missing energy (MET>40GeV)
 - No b-tagging requirement
- ME technique
- Dominant uncertainties
 Overall Jet energy scale and b-JES
- This is the most precise top quark mass measurement in dilepton channel to date

PRL 107 (2011) 082004

$\begin{array}{l} 174.0 \pm 1.8 \ (\text{stat}) \pm 2.4 (\text{syst}) \ \text{GeV/c}^2 \\ = 174.0 \pm 3.1 \ \text{GeV/c}^2 \end{array}$

HCP 2011,

Hyunsu Lee,

e, Korea University

Jets (no lepton) channels

- All Jets channel (5.8 fb⁻¹)
 Six jet final state
 - Neural network training to reject dominant multijet background
 - ✤ ~1 S/B ratio for 2tag (~300 signal)

- MET+Jets channel (5.7 fb⁻¹)
 - Large MET+four jets final state
 - NN selection for dominant multijet background rejection
 - Large acceptance of tau final state

HCP 2011,

Global EWK fit and Higgs constraints

LEPEWWG, http://lepewwg.web.cern.ch/LEPEWWG/plots/summer2011/

t and t mass difference

- If CPT is conserved, ΔM_{top} should be zero (SM)
- We test this assumption by measuring ΔM_{top}
- We use similar technique with mass measurements

5.6 fb⁻¹ | Lepton+Jets **Kinematic reconstruction**

 $\Delta M_{\rm top} = -3.3 \pm 1.7 \, {\rm GeV/c^2}$

PRL 106 (2011) 152001

Matrix element technique but allow different mass of top and anti-top

3.6 fb⁻¹

Lepton+Jets

 $\Delta M_{top} = +0.8 \pm 1.9 \text{ GeV/c}^2$

PRD 84 (2011) 052005

Top quark width

It is intrinsic parameter of SM
 Very precise estimation using NLO calculation (~1% precision)
 1.3 GeV at M_{top} = 172.5 GeV/c²

- Deviation from SM indicate new physics
 - Charged Higgs decay, FCNC, and other exotic models

• Resolving Top quark life time

$$au = \frac{\hbar}{\Gamma}$$
 Short life time (decay before hadronization)?

Top quark width

Direct measurement

- Use reconstructed top quark mass (RMS distribution)
- No assumption of SM

 $\begin{array}{c|c} \textbf{PRL 105 (2010) 232003} \\ \textbf{4.3 fb^{-1}} & \Gamma_{top} < 7.4 \ \text{GeV} @ 95\% \ \text{CL} \\ \hline \textbf{0.3} < \Gamma_{top} < 4.4 \ \text{GeV} @ 68\% \ \text{CL} \end{array}$

HCP 2011.

Indirect measurement

- Assume SM
- the single top t-channel cross section
- Ratio of $t \rightarrow Wb/t \rightarrow Wq$

$$\Gamma_{\mathbf{t}} = \frac{\sigma(\mathbf{t} - \mathbf{ch})}{\mathbf{Br}(\mathbf{t} \to \mathbf{bW})} \cdot \frac{\Gamma(\mathbf{t} \to \mathbf{bW})_{\mathbf{SM}}}{\sigma(\mathbf{t} - \mathbf{ch})_{\mathbf{SM}}}$$

$$\begin{split} \Gamma_{\rm top} &= 1.99^{+0.65} \,_{-0.55} \, {\rm GeV} \\ \tau_{\rm top} &= 3.3^{+1.3} \,_{-0.9} \, 10^{-25} {\rm sec} < \tau^{\rm had.} \\ \textbf{PRL 106 (2010) 022001} \end{split}$$

Hyunsu Lee, Ko

Spin Correlation

 Top quark decay before hadronization – Spin information of top quark passed to decay products

SM prediction
$$\kappa = \frac{N_{\uparrow\uparrow} + N_{\downarrow\downarrow} - N_{\uparrow\downarrow} - N_{\downarrow\uparrow}}{N_{\uparrow\uparrow} + N_{\downarrow\downarrow} + N_{\uparrow\downarrow} + N_{\downarrow\uparrow}} \approx 0.78$$

• κ is related with angles of decay products

Spin Correlation

 Top quark decay before hadronization – Spin information of top quark passed to decay products SM prediction $\kappa = \frac{N_{\uparrow\uparrow} + N_{\downarrow\downarrow} - N_{\uparrow\downarrow} - N_{\downarrow\uparrow}}{N_{\uparrow\uparrow} + N_{\downarrow\downarrow} + N_{\uparrow\downarrow} + N_{\downarrow\uparrow}} \approx 0.78$ Dilepton DØ Run II preliminary Lepton+Jets $\frac{1}{N}\frac{dN}{d(\cos\theta_{1}\cos\theta_{2})}$ 0.25 0.25Unpolarized sample ----- tł, Pythia SM spin corr. No spin OH basis template tī, Pythia no spin corr. 0.2 - SH basis template correlation **Spin No Spin** $\kappa = 0$ 0.15 0.15 **Spin** correlation... Correlated Correlation Anti spin 0. 0.1 **K=1 κ=0** correlation **K=1** 0.05 к=-1 0.05 -0.6 0.2 0.40.6 0.8 0.2 0.4 0.6 0.8 -0.8 -0.6 -0.4 -0.2 0 $\cos(\theta_1)\cos(\theta_2)$ $cos(\theta_1) cos(\theta_2)$

Spin Correlation

Spin correlation with ME method

Combination of lepton+jets and dilepton

HCP 2011, Hyunsu Lee, Korea University

W Helicity

- The SM top decays via EW interaction
 ♦ Top decays as a bare quark ⇒ spin information transferred to final state particles

Measuring the fraction of longitudinally polarized W 8.0 8 0 0 0 0.6 bosons left handed ЧV Ionaitudina right handed sum (SM) **\diamond** Reconstructed $\cos\theta^*$ θ^* 0.4 0.2 b W^+ -0.5 0.5 0 -1 $\cos\theta$ HCP 2011. Hyunsu Lee, Korea University

W Helicity

Tevatron combination

Forward backward asymmetry (A_{FB})

25

 A_{FB}

A_{FB}

- CDF has clear dependence of A_{FB} for m_{ttbar} but, D0 has not
- Update with full data set will be interesting stay tuned

Conclusion

- Top quarks properties are well being studied at Tevatron
 We are performing rigorous study for top quark
 Unique/Complementary measurements to test SM and new physics
- Tevatron's legacy on top physics is still ongoing
 - We have twice of data and will update interesting top property measurements soon
 - It is not only adding ~x2 data but also improvement of machinery

http://www-cdf.fnal.gov/physics/new/top/top.html

http://www-d0.fnal.gov/Run2Physics/top/top_public_web_pages/top_public.html