Effective Field Theory for Top and Weak Boson Physics

Scott Willenbrock U. of Illinois at Urbana-Champaign

HCP 2011, Paris

November 15, 2011

- 1. Measure fundamental parameters m_t, M_W
- 2. Search for physics beyond the SM Deviations from standard model predictions

1. Measure fundamental parameters m_t, M_W

1. Measure fundamental parameters m_t, M_W $m_t = y_t v$

1. Measure fundamental parameters m_t, M_W $m_t = y_t v$ $M_W = \frac{1}{2} g v$

1. Measure fundamental parameters m_t, M_W $m_t = y_t v$ $M_W = \frac{1}{2} g v (1 + radiative corrections)$

Measure fundamental parameters 1. m_t, M_w $m_t = y_t v$ $M_{W} = \frac{1}{2} g v (1 + radiative corrections)$ h $W \dots W \qquad W \dots W$

- 1. Measure fundamental parameters m_t, M_W
- 2. Search for physics beyond the SM Deviations from standard model predictions

- 1. Measure fundamental parameters m_t, M_W
- 2. Search for physics beyond the SM Deviations from standard model predictions How should we think about this?

- 1. Measure fundamental parameters m_t, M_W
- 2. Search for physics beyond the SM Deviations from standard model predictions How should we think about this? Effective Field Theory

Dimensional analysis $\hbar = c = 1$ $\dim A^{\mu} = 1$ $\dim \phi = 1$ $\dim \psi = 3/2$

Dimensional analysis $\hbar = c = 1$ $\dim A^{\mu} = 1$ $\dim \phi = 1$ $\dim \psi = 3/2$

Good news: only a few operators contribute to top and weak boson physics

Leung, Love, Rao 1984 Buchmuller, Wyler 1986

$$f_{0} = \frac{m_{t}^{2}}{m_{t}^{2} + 2M_{W}^{2}} = 0.7$$

$$f_{-} = \frac{m_{t}^{2}}{m_{t}^{2} + 2M_{W}^{2}} = 0.3$$

$$m_{b} = 0$$

$$f_{+} = 0$$

 $O_{tW} = (\bar{q}\sigma^{\mu\nu}\tau^{I}t)\tilde{\phi}W^{I}_{\mu\nu}$

$$f_{0} = \frac{m_{t}^{2}}{m_{t}^{2} + 2M_{W}^{2}}$$
$$f_{-} = \frac{m_{t}^{2}}{m_{t}^{2} + 2M_{W}^{2}}$$
$$f_{+} = 0$$

$$O_{tW} = (\bar{q}\sigma^{\mu\nu}\tau^{I}t)\tilde{\phi}W^{I}_{\mu\nu} \longrightarrow L_{eff} = i\frac{C_{tW}}{\Lambda^{2}}v\left(\bar{b}\sigma^{\mu\nu}(1+\gamma_{5})t\right)\partial_{\nu}W^{-}_{\mu\nu}$$

$$f_{0} = \frac{m_{t}^{2}}{m_{t}^{2} + 2m_{W}^{2}}$$
$$f_{-} = \frac{2m_{W}^{2}}{m_{t}^{2} + 2m_{W}^{2}}$$
$$f_{+} = 0$$

Zhang and SW

Top decay

Aguilar-Saavedra et al.

$$\begin{aligned} O_{tW} &= (\bar{q}\sigma^{\mu\nu}\tau^{I}t)\tilde{\phi}W^{I}_{\mu\nu} \longrightarrow L_{eff} = i\frac{C_{tW}}{\Lambda^{2}}v\left(\bar{b}\sigma^{\mu\nu}(1+\gamma_{5})t\right)\partial_{\nu}W^{-}_{\mu} \\ f_{0} &= \frac{m_{t}^{2}}{m_{t}^{2}+2m_{W}^{2}} - \frac{4\sqrt{2}C_{tW}v^{2}}{\Lambda^{2}}\frac{m_{t}m_{W}(m_{t}^{2}-m_{W}^{2})}{(m_{t}^{2}+2m_{W}^{2})^{2}} \\ f_{-} &= \frac{2m_{W}^{2}}{m_{t}^{2}+2m_{W}^{2}} + \frac{4\sqrt{2}C_{tW}v^{2}}{\Lambda^{2}}\frac{m_{t}m_{W}(m_{t}^{2}-m_{W}^{2})}{(m_{t}^{2}+2m_{W}^{2})^{2}} \\ f_{+} &= 0 \end{aligned}$$

Zhang and SW

Aguilar-Saavedra et al.

CDF + D0

 $f_0 = 0.685 \pm 0.035 \,(\text{stat}) \pm 0.045 \,(\text{syst})$

$$f_{0} = \frac{m_{t}^{2}}{m_{t}^{2} + 2m_{W}^{2}} - \frac{4\sqrt{2}C_{tW}v^{2}}{\Lambda^{2}} \frac{m_{t}m_{W}(m_{t}^{2} - m_{W}^{2})}{(m_{t}^{2} + 2m_{W}^{2})^{2}}$$

$$f_{-} = \frac{2m_{W}^{2}}{m_{t}^{2} + 2m_{W}^{2}} + \frac{4\sqrt{2}C_{tW}v^{2}}{\Lambda^{2}} \frac{m_{t}m_{W}(m_{t}^{2} - m_{W}^{2})}{(m_{t}^{2} + 2m_{W}^{2})^{2}}$$

$$f_{+} = 0$$

Zhang and SW

Aguilar-Saavedra et al.

CDF + D0

 $f_0 = 0.685 \pm 0.035 \,(\text{stat}) \pm 0.045 \,(\text{syst}) \longrightarrow \frac{C_{tW}}{\Lambda^2} = 0.03 \pm 0.94 \,\text{TeV}^{-2}$

$$f_{0} = \frac{m_{t}^{2}}{m_{t}^{2} + 2m_{W}^{2}} - \frac{4\sqrt{2}C_{tW}v^{2}}{\Lambda^{2}} \frac{m_{t}m_{W}(m_{t}^{2} - m_{W}^{2})}{(m_{t}^{2} + 2m_{W}^{2})^{2}}$$

$$f_{-} = \frac{2m_{W}^{2}}{m_{t}^{2} + 2m_{W}^{2}} + \frac{4\sqrt{2}C_{tW}v^{2}}{\Lambda^{2}} \frac{m_{t}m_{W}(m_{t}^{2} - m_{W}^{2})}{(m_{t}^{2} + 2m_{W}^{2})^{2}}$$

$$f_{+} = 0$$

w

Virtual Top

Greiner, Zhang, SW

Virtual Top

Barbieri, Pomarol, Rattazzi, Strumia

Scott Willenbrock - UIUC

Greiner, Zhang, SW

Virtual Top

$$\hat{U} = (-5.0 \pm 8.4) \times 10^{-4} \longrightarrow \frac{C_{tW}}{\Lambda^2} = -0.7 \pm 1.1 \text{ TeV}^{-2}$$

Barbieri, Pomarol, Rattazzi, Strumia

Scott Willenbrock - UIUC

Top dim 6 operators

$$O_{tW} = (\bar{q}\sigma^{\mu\nu}\tau^{I}t)\tilde{\phi}W^{I}_{\mu\nu}$$

$$D_{eq} = i(\phi^{+}\tau^{I}D_{\mu}\phi)(\bar{q}\gamma^{\mu}\tau^{I}q)$$

$$D_{eq} = (\bar{q}^{i}\gamma_{\mu}\tau^{I}q^{j})(\bar{q}\gamma^{\mu}\tau^{I}q)$$

$$O_{tG} = (\bar{q}\sigma^{\mu\nu}\lambda^{A}t)\tilde{\phi}G^{A}_{\mu\nu} + h.c.$$

$$O_{G} = f_{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$$

$$Cho and Simmons$$

$$Zhang and SW$$

$$Degrande, Gerard, Grojean, Maltoni, Servant$$

$$Aguilar-Saavedra et al.$$

$$Cao, Wudka, Yuan$$

$$Grzadkowski et al.$$

Strategy:

 O_{tW} from t decay $O_{\phi q}$ O_{qq} from s-, t-channel single top O_{tG} from Wt O_G from tt

Scott Willenbrock - UIUC

Effective field theory

- Well motivated and provides guidance
- SU(3)xSU(2)xU(1) gauge invariant
- Includes contact interactions
- Valid for top and bottom off shell
- Can calculate radiative corrections

Weak boson pair production

Weak boson pair production

Hagiwara, Isihara, Szalapski, Zeppenfeld

Wudka

$$\mathcal{O}_{WWW} = \operatorname{Tr}[W_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}]$$
$$\mathcal{O}_{W} = (D_{\mu}\Phi)^{\dagger}W^{\mu\nu}(D_{\nu}\Phi)$$
$$\mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi)$$

C and P conserving

Weak boson pair production

Hagiwara, Isihara, Szalapski, Zeppenfeld

Wudka

$$\mathcal{O}_{WWW} = \operatorname{Tr}[W_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}]$$
$$\mathcal{O}_{W} = (D_{\mu}\Phi)^{\dagger}W^{\mu\nu}(D_{\nu}\Phi)$$
$$\mathcal{O}_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi)$$

C and P conserving

$$\mathcal{O}_{\tilde{W}WW} = \operatorname{Tr}[\tilde{W}_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}]$$
$$\mathcal{O}_{\tilde{W}} = (D_{\mu}\Phi)^{\dagger}\tilde{W}^{\mu\nu}(D_{\nu}\Phi)$$

C and/or P violating

WW pp

pp

pp

Relationship to anomalous couplings

$$g_1^Z = 1 + c_W \frac{m_Z^2}{2\Lambda^2}$$

$$\kappa_\gamma = 1 + (c_W + c_B) \frac{m_W^2}{2\Lambda^2}$$

$$\kappa_Z = 1 + (c_W - c_B \tan^2 \theta_W) \frac{m_W^2}{2\Lambda^2}$$

$$\lambda_\gamma = \lambda_Z = c_{WWW} \frac{3g^2 m_W^2}{2\Lambda^2}$$

Hagiwara, Isihara, Szalapski, Zeppenfeld

Wudka

- 1. Three parameters instead of five c_W, c_B, c_{WWW} (C and P conserving)
- 2. All parameters are constants Independent of energy

What about unitarity bounds?

- 1. Data respect unitarity bounds Physical requirement
- 2. A theory that fits the data will also respect unitarity bounds

Effective theory is intended to describe data

pp

What about unitarity bounds?

- 1. Data respect unitarity bounds Physical requirement
- 2. A theory that fits the data will also respect unitarity bounds

Effective theory is intended to describe data

Degrande et al.

Unitarity is irrelevant

Wudka

No need for form factors

Conclusion

- Effective field theory is the ideal way to parameterize unknown physics at "low" energy
 - Well motivated, provides guidance, systematic
 - Incorporates gauge symmetry
 - Includes contact interactions
 - Valid for real or virtual particles
 - Allows for unambiguous loop calculations
- No need for form factors in WW physics
 - Unitarity bound is automatically satisfied

Conclusion

- We are putting all 59 dim 6 operators into Madgraph 5.
 - Top physics
 - WW physics
 - Higgs physics
 - ...
- Contact Celine Degrande cdegrand@illinois.edu

Vertex function approach

Kane, Ladinsky, Yuan 1992

Effective field theory approach provides rationale for neglecting some f's, setting others to constants

Virtual Top

Scott Willenbrock - UIUC