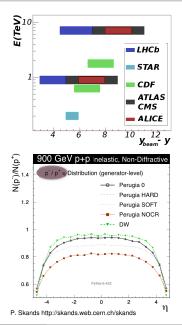
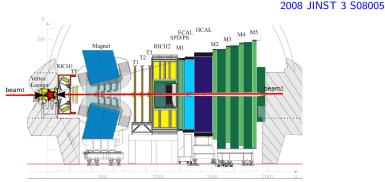
QCD studies in the forward region @ LHCb Hadron Collider Physics Symposium 2011

Victor Coco

NIKHEF


November 14th-18th, 2011

On behalf of the LHCb collaboration



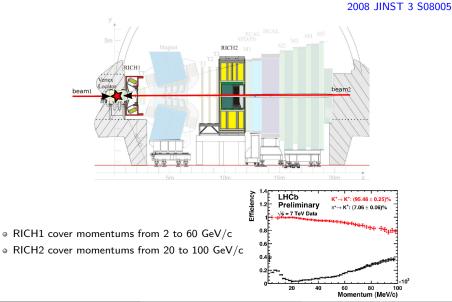
Introduction

- LHCb experiment is fully instrumented over a unique region of pseudo rapidity at LHC $(2 < \eta < 5)$.
- Forward region provide an interesting test of particle production, hadronisation and baryon number transport for MC models.
- Several measurements are covered in this talk:
 - Charged particles multiplicity at $\sqrt{s} = 7 \ TeV$.
 - Inclusive ϕ cross-section at $\sqrt{s} = 7 \ TeV$.
 - V0 production ratio at $\sqrt{s} = 900 \text{ GeV}$ and $\sqrt{s} = 7 \text{ TeV}$.
 - Light hadron production ratio at $\sqrt{s} = 900 \text{ GeV}$ and $\sqrt{s} = 7 \text{ TeV}$.
- All these measurements were performed with the 2009/2010 data sample, but some are shown here for the first time.



LHCb detector Focus on Tracking and Hadronic Particle ID

- Designed for CP violation studies in B decay and rare decays.
- $\circ\,$ Single arm spectrometer, $\sim\,30\%$ of $b\bar{b}$ pairs produce in the acceptance.
- So far $\sim 0.3 nb^{-1}$ recorded at $\sqrt{s} = 900 \, GeV$ and $\sim 1.1 fb^{-1} \sqrt{s} = 7 \, TeV$.


LHCb detector Focus on Tracking and Hadronic Particle ID

Victor Coco (NIKHEF)

•

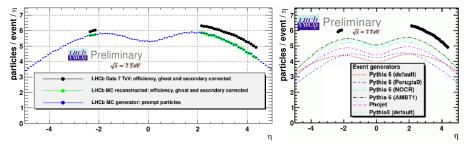
LHCb detector Focus on Tracking and Hadronic Particle ID

Charged particles multiplicity $\sqrt{(s)} = 7 TeV$ Selection

• Charged particles are counted by reconstructing tracks in the vertex locator (VELO)

 \rightarrow low material budget, high efficiency, partial backward coverage but no momentum information.

Only prompt charged particles are considered

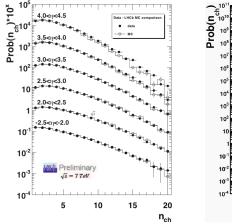

 \rightarrow definition at MC generator level: $\tau_{ancestors} < 10 ps$, no K_s^0 and Λ decays.

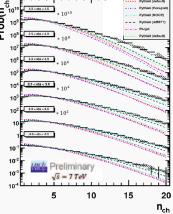
- Loose trigger and selection: one reconstructed track in the VELO.
- $\,$ 0.15 M events at each polarity with low pile-up dataset (3.7 \pm 0.4% events with more than one interaction).

Charged particles multiplicity @ $\sqrt{(s)} = 7 TeV$

Multiplicity vs. pseudo-rapidity

- Event particle multiplicity obtained by unfolding of the migration due to reconstruction inefficiencies.
- Procedure verified with MC simulations, good agreement between the reconstructed and corrected distribution and the generated distribution.
- $\bullet\,$ Distribution as function of η are normalised to events with at least on charged particle in forward acceptance.

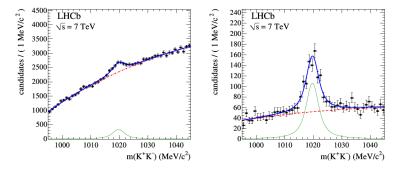



• Multiplicity is larger in data than in any of the tested MC tunes.

Charged particles multiplicity @ $\sqrt{(s)} = 7 TeV$

Multiplicity probabilities

Hard interactions: require at least one charged particle with $p_T > 1 \; GeV/c$ in 2.5 $< \eta < 4.5$



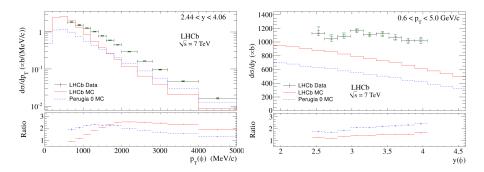
- Good agreement of unfolded multiplicity between LHCb MC and data
- Good agreement between Pythia 6 NOCR and data.

Inclusive ϕ cross section @ $\sqrt{(s)} = 7 TeV$ Selection

Phys. Lett. B 703 (2011) 267-273

- $\bullet\,$ Probe strangeness production \to information on fragmentation, tuning of MC models in our pseudorapidity region.
- Measurements performed at $\sqrt{s} = 7 TeV$ (14.7*nb*⁻¹) with loose trigger.
- $\phi \to K^+K^-$ are selected with at least one K PID requirements, $1. < m_{KK} < 1.045 GeV/c^2$
- ${\, \bullet \, }$ Resolution dominated by the natural width of the ϕ

Inclusive ϕ cross section @ $\sqrt{(s)} = 7 TeV$


Corrections and systematics

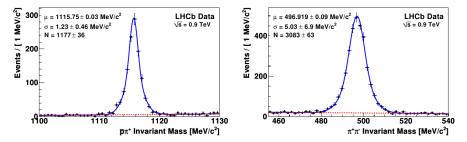
$$\sigma_{pp \to \phi X} = \frac{N_{tag}}{\epsilon_{PID} \times \epsilon_{reco} \times \epsilon_{trigger} \times \epsilon_{PV} \times B(\phi \to KK) \int L}$$

- PID efficiency is extracted from data, per bins of p_T , y (> 80% in most of the bins).
- ${\, \circ \,}$ Number of ϕ candidates is extracted from the tag and probe mass distributions.
- Trigger efficiency is a known prescale.
- Reconstruction efficiency is extracted from MC per bins of p_T , y.

	Common to all bin	%
	Tracking efficiency	8
	Luminosity	4
	Track Multiplicity	3
Main systematics	 Total correlated	10
	Bin dependent	%
	Reconstruction efficiency	typically 5%
	PID	typically 2%

Inclusive
$$\phi$$
 cross section $@\sqrt(s) = 7 TeV$
Results

• At $\sqrt{s} = 7 TeV$, for ϕ with $p_T \in [0.6, 5. GeV/c]$ and $y \in [2.44, 4.06]$:


 $\sigma_{\it pp
ightarrow \phi X} = 1758 \pm 19(\textit{stat}) \pm ^{+43}_{-14} (\textit{syst}) \pm 182(\textit{scale}) \mu b$

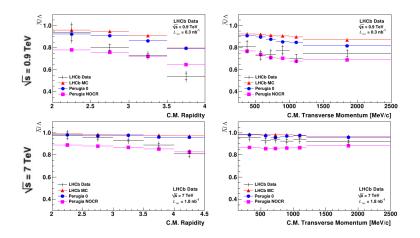
• More strange mesons produced forward than expected from MC models.

 $\bar\Lambda/\Lambda,\,\bar\Lambda/K^0_s$ production ratio at $\sqrt{s}=900\,GeV$ and $\sqrt{s}=7\,TeV$ Particle selection

J. High Energy Phys. 08 (2011) 034

- $\bar{\Lambda}/\Lambda$ probe the baryon transport number. $\bar{\Lambda}/K_s^0$ probe the strange baryon suppression.
- Measurements performed at $\sqrt{s} = 900 GeV (0.3 nb^{-1})$ and $\sqrt{s} = 7 TeV (1.8 nb^{-1})$.
- Very loose trigger: one track seen in downstream tracking.
- A primary vertex is required.
- Prompt K_s^0 and $\Lambda(\bar{\Lambda})$ decaying to $\pi^+\pi^-$ and $p\pi^-(\bar{p}\pi^+)$.
- Cut on IP combination of the Λ and K_s^0 and daughters, to reduce combinatorial background and non-prompt contribution.

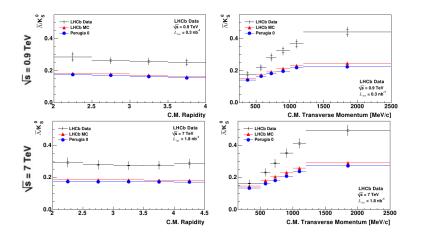
• Measurements are done in 6 bins of p_T (250 $< p_T < 2500 MeV/c$) and 4 bins of rapidity 2 < y < 4.


Production ratio: $\bar{\Lambda}/\Lambda$, $\bar{\Lambda}/K_s^0$ _{Systematics}

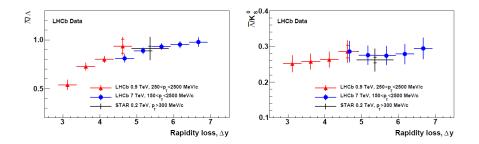
- Efficiency of selection prompt Λ and K_s^0 estimated from MC after reweighing of p_T ,y distribution to match data.
- Most systematics cancel through the ratio.

	$\bar{\Lambda}/\Lambda$	$\bar{\Lambda}/K_s^0$
Material interaction (*)	0.02	0.02
Diffractive event fraction(*)	0.01 - 0.02	0.01 - 0.02
Primary vertex finding (*)	< 0.02	< 0.01
Non prompt fraction (*)	< 0.01	< 0.01
Track finding (*)	negligible	0.01
MC kinematic correction	0.01 - 0.05	< 0.03
Signal extraction	0.001	0.001
Total	0.02 - 0.06	0.02 - 0.03

After corrections, the two magnet polarity sample are in good agreement \rightarrow combined in the results, taking (*) into account.


Baryon Number transport: $\bar{\Lambda}/\Lambda$ $_{\mbox{\tiny Results}}$

• Good agreement with MC at low rapidity, underestimated at higher rapidity.

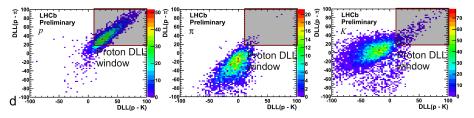

• Extreme models of baryon number transport seams to be favoured at high rapidity.

Strange baryon suppression: $\bar{\Lambda}/{\cal K}^0_s$ $_{\rm Results}$

• The ratio Λ/K_s^0 , measuring the suppression of strange baryons in hadronisation, is significantly larger than expected.

$\bar{\Lambda}/\Lambda$ and $\bar{\Lambda}/K_s^0$ as function of rapidity loss $_{\rm \tiny Results}$

•
$$\Delta y = y_{beam} - y$$

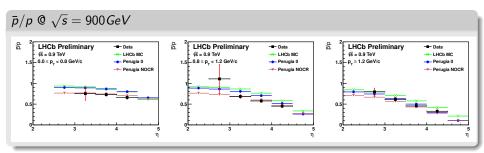

- Agreement with STAR measurment.
- Good agreement between the two energies.

Proton selection

LHCb-CONF-2010-009 Update first shown here

• \bar{p}/p production ratio first presented at ICHEP 2010, since then systematic error treatment have been finalized, and the analysis is extended to $K^-/K^+, \pi^-/\pi^+$, $(\bar{p}+p)/(K^-+K^+), (\bar{p}+p)/(\pi^-+\pi^+), (K^-+K^+)/(\pi^-+\pi^+)$ observables.

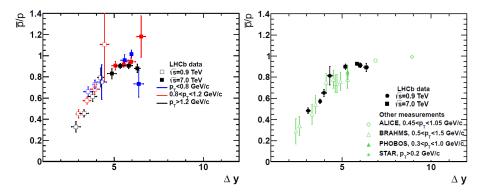
- Measurements performed at $\sqrt{s} = 900 \, GeV \, (0.3 n b^{-1})$ and $\sqrt{s} = 7 \, TeV \, (1.8 n b^{-1})$ with loose trigger.
- Prompt particles with p > 5 GeV/c are selected with PID requirements.
- Efficiency and purity of the PID evaluated on data using tag and probe method on calibration samples: $\phi \to K^+ K^-$, $K_s \to \pi^+ \pi^-$ and $\Lambda \to \pi p$.

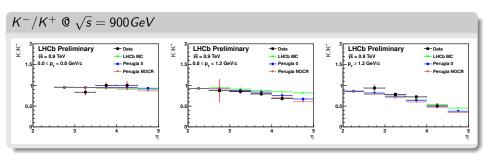


• Measurements are done in 3 bins of p_T (0;0.8; 1.2 GeV/c) and 5 bins of rapidity 2 < y < 4.5.

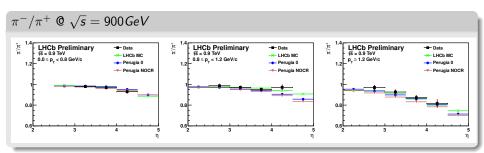
Correction for reconstruction bias and systematics

- Cross contamination effect for ID efficiency and misID extracted from calibration sample for each p_T , η bins, magnet polarity and particle/anti particle.
- ID efficiency reweighted according to track multiplicity.
- For p of $p_T > 1.2 GeV$, purities are > 90% with efficiencies > 95% for $\eta > 3$.
- Correction of particle losses through interaction with material extracted from MC for each p_T , η bins, magnet polarity and particle/anti particle.

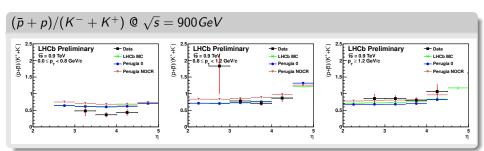

	\pm ratios	$\sqrt{s} = 900 GeV$	$\sqrt{s} = 7 TeV$
	PID contamination (%)	0.8-45	0.5-25.
	Material Interaction (%)	0.04-1.5	0.04-1.7
	MC Detector description (%)	0.04-1.6	0.04-0.8
Main systematics	Track asymmetry (%)	1.	0.5
(bin extrema values)			
	A/B ratios	$\sqrt{s} = 900 GeV$	$\sqrt{s}=7TeV$
	PID contamination (%)	664.	3.7-31.
	Material Interaction (%)	0.08-2.4	0.2-2.2
	MC Detector description (%)	0.04-1.2	0.1-1.1


$$\overline{p}/p @ \sqrt{s} = 7 TeV$$

Victor Coco (NIKHEF)

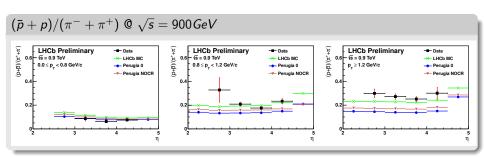

Baryon number transport

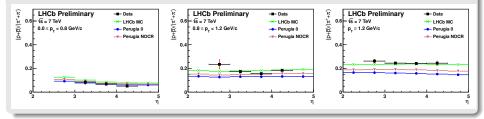
- No evidence of significant p_T dependency.
- Consistent with previous experiments but significantly more precise.

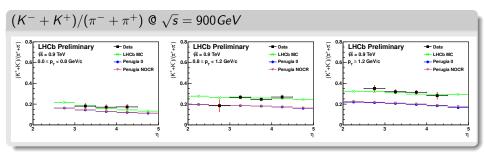

Victor Coco (NIKHEF)

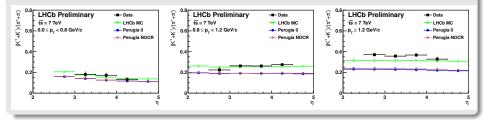

$$\pi^{-}/\pi^{+} @ \sqrt{s} = 7 TeV$$

$$\downarrow_{12}^{14} \underbrace{\mathsf{LHCb Preliminary}}_{12} \underbrace{\mathsf{HCb Breliminary}}_{12} \underbrace{\mathsf{$$


Victor Coco (NIKHEF)


$$(ar{p}+p)/(K^-+K^+)$$
 @ $\sqrt{s}=7\,TeV$


Victor Coco (NIKHEF)


$$(ar{p}+p)/(\pi^-+\pi^+)$$
 @ $\sqrt{s}=7\,TeV$

Victor Coco (NIKHEF)

$$(K^- + K^+)/(\pi^- + \pi^+)$$
 @ $\sqrt{s} = 7 \, TeV$

Victor Coco (NIKHEF)

- LHCb experiment provide an excellent environment for particle production studies at high rapidity.
- ϕ production is underestimated in event generators, p_T and y spectra differs from prediction.
- Charged particle production is underestimated in most of the generator tunes for soft events, better agreement for hard interaction.
- $\bar{\Lambda}/K_s^0$ is higher than expected, especially at large p_T .
- $\bullet\,$ Baryon number transport is generally underestimated in MC models, especially at $\sqrt{s}=900~GeV.$
- Prompt hadron production ratios measurement also shows there is room for improvement in tuning of MC models in LHCb rapidity region.

Backup

Pythia LHCb MC

Parameter	Value	Parameter	Value
CKIN(41)	3.0	PARP(86)	0.66
MSTP(2)	2	PARP(89)	14000
MSTP(33)	3	PARP(90)	0.238
MSTP(81)	21	PARP(91)	1.0
MSTP(82)	3	PARP(149)	0.02
MSTP(52)	2	PARP(150)	0.085
MSTP(51)	10042	PARJ(11)	0.5
MSTP(142)	2	PARJ(12)	0.4
PARP(67)	1	PARJ(13)	0.79
PARP(82)	4.28	PARJ(14)	0.0
PARP(85)	0.33	PARJ(15)	0.018
MSTJ(26)	0	PARJ(16)	0.054
PARJ(33)	0.4	PARJ(17)	0.131

Processes activated in the LHCb simulation software

Process number	Description
11	$f + f' \to f + f' (\text{QCD})$
12	$f + \overline{f} \rightarrow f' + \overline{f'}$
13	$f + \overline{f} \rightarrow g + g$
28	$f + g \rightarrow f + g$
53	$g + g \rightarrow f + \overline{f}$
68	$g + g \rightarrow g + g$
91	Elastic scattering
92	Single diffractive $(AB \rightarrow XB)$
93	Single diffractive $(AB \rightarrow AX)$
94	Double diffractive
95	Low- p_T scattering
421 - 439	Prompt charmonium
461 - 479	Prompt bottomonium

Pythia Perugia Tunes

Phys.Rev. D82 (2010) 074018