



# Photon Energy Scale Determination and Commissioning with Radiative Z decays

Olivier Bondu on behalf of the CMS collaboration Institut de Physique Nucléaire de Lyon, CNRS/IN2P3, UCB Lyon 1

## Introduction: CMS and its electromagnetic calorimeter (ECAL)

CMS (Compact Muon Solenoid) [1]: one of the two multipurpose experiments recording collisions produced by the Large Hadron Collider Very-forward Calorimete Main features: - Superconducting solenoid: 3.8T magnetic field

- Hermetic, compact (14,000 tons ; 28.7m x 15m) - Muon chambers



[1]



Calorimeters within the solenoid coil

End-cap crystals

- Barrel: 36 supermodules of 1,700 crystals each, light converted by APD - Endcaps: 4 dees of 3662 crystals each, light converted by VPT

## Physics performance: motivation for a dedicated photon standard candle

1) ECAL calibration scheme



The ECAL resolution has been measured in electron test-beams and parametrized as follows:

$$\frac{\sigma(E)}{E} = \frac{2.8\%}{\sqrt{E(GeV)}} \oplus \frac{12\%}{E(GeV)} \oplus 0.3\%$$

The three contributions correspond respectively to the stochastic component (S), the electronic and experimental noise (N), and a constant term (C).

For photons of energy ~100 GeV (  $H \rightarrow \gamma \gamma$  range), the energy resolution is 200 250 E (GeV) dominated by the constant term (significant contribution from calibration).

The reconstructed energy of a particle in the ECAL is:

$$E = F \cdot \sum_{cluster \ crystals} G(GeV/ADC) \cdot C_i \cdot A_i$$

Where:

0.8

0.6

0.4

0.2

- $A_i$  represents a reconstructed amplitude in ADC counts
- $C_i$  is an intercalibration constant

 $S = 2.8 (\%) (GeV)^{\frac{1}{2}}$ 

150

N = 0.12 (GeV)C = 0.3 (%)

- G is the global energy scale
- F represents the energy correction (depends on the particle type, energy, and pseudo-rapidity; contains the cluster energy corrections)

Different physics channels are available to evaluate the different calibration terms:  $\pi^0 \to \gamma \gamma \ \eta \to \gamma \gamma$ ,  $J/\psi \rightarrow e^+e^-, W^{\pm} \rightarrow e^{\pm}\nu, Z^0 \rightarrow e^+e^-$ 

photons and electrons behave required by analyses with differently in the ECAL photons in the final state - good photon calibration especially crucial for - knowledge of photon energy scale —— desire for a dedicated - design resolution standard candle for photons,  $H \rightarrow \gamma \gamma$ complementary to  $Z^0 \rightarrow e^+e^-$ 



- Loose photon object selection (fiducial cuts only, to keep it as unbiased as possible)

- requirement on maximum angular separation between photon and closest muon to reject ISR
- Three-body invariant mass window
- Source of high-purity photons





- Kinematics are well-constrained by the Z boson mass and the precision on the muon momenta - steeply falling photon energy spectrum [2]

#### Results

2) Photon Identification: lepton veto

SuperCluster



The variable R9 is defined as:

1) Photon Commissioning: R9

 $R_9 = \frac{E^{3X3}}{E^{SuperCluster}}$ 

It quantifies the lateral width of an electromagnetic shower, and is thus widely used to distinguish converted and unconverted photons.

The superclustering algorithms are optimized to give the best photon resolution, thus behave differently if a deposit is thought to belong to a converted photon (threshold on the R9 variable).

. . . .

| Source                                                         | Uncert       | ainty [6]    | 1   | $91.77 \pm 0.14$         | $92.43 \pm 0.07$         | $0.993 \pm 0.002$             | $s = E_{reco} / E_{kin.} -1$                                               | 1 0.0                                        | $s = E_{reco} / E_{kin.} - 1$             |
|----------------------------------------------------------------|--------------|--------------|-----|--------------------------|--------------------------|-------------------------------|----------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------|
| Photon identification efficiency                               |              |              | 2   | $72.67 \pm 0.43$         | $71.89 \pm 0.08$         | $1.011 \pm 0.007$             | $CMS Preliminary 2010  \sqrt{s} = 7 \text{ TeV}$                           | CMS Preliminary 2010                         | $\sqrt{s} = 7 \text{ TeV}$                |
| barrel                                                         | 1.09         | %            | 3   | $80.33 \pm 0.47$         | $80.04 \pm 0.18$         | $1.004 \pm 0.008$             | C Entries: 44 ECAL Endcap                                                  | 0<br>150<br>Fit: Crystal-Ball                |                                           |
| endcap                                                         | 2.59         | %            | 4   | $57.80 \pm 1.26$         | $55.09 \pm 0.15$         | $1.049 \pm 0.025$             | Arr                                    | Mean = -0.003 +- 0.003 GeV                   | Simulation -                              |
| $R_9 > 0.94$ efficiency<br>(results in class migration) barrel | 4%           | /            | Ele | ectron rejection         | cut (from $Z$ ·          | $\rightarrow \mu\mu\gamma)$   |                                                                            |                                              |                                           |
| endcap                                                         | 6.59         | %            | 1   | 99.78 $^{+0.13}_{-0.16}$ | 99.59 $^{+0.13}_{-0.17}$ | $1.002^{+0.002}_{-0.002}$     |                                                                            | 50-                                          |                                           |
|                                                                | $R_9 > 0.94$ | $R_9 < 0.94$ | 2   | 98.77 $^{+0.59}_{-0.73}$ | $97.70^{+0.32}_{-0.37}$  | $  1.011^{+0.007}_{-0.008}  $ |                                                                            |                                              |                                           |
| Energy resolution $(\Delta \sigma / E_{MC})$                   | 0.2%         | 0.4%         | 3   | 99.32 $^{+0.51}_{-1.02}$ | 99.29 $^{+0.30}_{-0.42}$ | $1.000^{+0.006}_{-0.011}$     | -1 -0.5 0 0.5 1                                                            | -1 -0.5                                      | 0 0.5 1                                   |
| endcap                                                         | 0.2%         | 0.4%         | 4   | $93.0^{+2.1}_{-2.3}$     | 93.34 $^{+0.79}_{-0.86}$ | $0.996^{+0.024}_{-0.027}$     | $s = E_{reco} / E_{kin.} - 1$                                              |                                              | $s = E_{reco} / E_{kin.} - 1$             |
| Energy scale $((E_{data} - E_{MC})/E_{MC})$                    |              |              |     |                          |                          |                               | Photon scale agrees with expectation<br>and a% in FF (a 7% too low) The ox | is at the 1% level i<br>tracted scale is con | in EB (1.1% too hig<br>ngistant batwaan t |
| barrel                                                         | 0.1%         | 0.4%         |     |                          |                          |                               | different methods : spread = $1.3\%$ (F                                    | EB): 2% (EE)                                 | IISIStellt Detweell t                     |
| endcap                                                         | 0.3%         | 0.4%         |     |                          |                          |                               | This method has been used in V-gar                                         | nma cross section                            | measurement [4]                           |
|                                                                |              |              |     |                          |                          |                               |                                                                            |                                              |                                           |

For the  $H \rightarrow \gamma \gamma$  analyses [5-6], the efficiency of photon identification is measured in data using tag-and-probe techniques.  $Z^0 \rightarrow e^+e^-$  events are used to determine the efficiency of the complete selection with the exception of the electron veto cut.

 $Z^0 \rightarrow \mu\mu\gamma$  events have been used to measure the efficiency for photons to pass the electron veto, with tag-and-probe techniques with the dimuon system as the tag and the photon candidate as the probe.

| The limit setting process in the $H  ightarrow \gamma\gamma$ search [5-6] is performed in |                                                                   |          |                                                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [6]                                          |                                                  |                                                        |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------|---------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------|--------------------------------------------------------|
| resolution classes. The uncertainty in class assignment/migration                         |                                                                   | Category | $\epsilon_{data}$ (%)                                         | $\epsilon_{MC}$ (%)      | $\epsilon_{data}/\epsilon_{MC}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                  |                                                        |
| between classes is a source of systematic error and is quantified with                    |                                                                   |          |                                                               | orcont cloctro           | $\frac{1}{1} \frac{1}{1} \frac{1}$ | $\frac{cuuu / c_M c}{c_M (z_1) + c_M (z_2)}$ |                                                  |                                                        |
| $Z^0  ightarrow \mu \mu \gamma~~{ m events.}$                                             |                                                                   |          | All cuts except electron rejection (from $Z \rightarrow ee$ ) |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | -1 -0.5 0 0.5 1                                  | $\begin{bmatrix} 1 & -0.5 & 0 & 0.5 & 1 \end{bmatrix}$ |
| Source                                                                                    | Uncertainty                                                       | [6]      | 1                                                             | $91.77 \pm 0.14$         | $92.43 \pm 0.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.993 \pm 0.002$                            | $s = E_{reco} / E_{kin.} -1$                     | $s = E_{reco} / E_{kin.} - 1$                          |
| Photon identification efficiency                                                          |                                                                   |          | 2                                                             | $72.67{\pm}0.43$         | $71.89 \pm 0.08$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.011 \pm 0.007$                            | $CMS Preliminary 2010  \sqrt{s} = 7 \text{ TeV}$ | $CMS Preliminary 2010  \sqrt{s} = 7 \text{ TeV}$       |
| barrel                                                                                    | 1.0%                                                              |          | 3                                                             | $80.33{\pm}0.47$         | $80.04 \pm 0.18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.004 \pm 0.008$                            | C Entries: 44<br>Fit: Gaussian, binned           | O 150 Fit: Crystal-Ball                                |
| endcap                                                                                    | 2.5%                                                              |          | 4                                                             | $57.80{\pm}1.26$         | $55.09 \pm 0.15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $1.049 \pm 0.025$                            | Mean = -0.0406 + 0.0205                          | Mean = -0.003 +- 0.003 GeV                             |
| $R_9 > 0.94$ efficiency<br>(results in class migration) barrel                            | $R_9 > 0.94$ efficiency<br>(results in class migration) barrel 4% |          | Electron rejection cut (from $Z \to \mu \mu \gamma$ )         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                  |                                                        |
| endcap                                                                                    | 6.5%                                                              |          | 1                                                             | 99.78 $^{+0.13}_{-0.16}$ | 99.59 $^{+0.13}_{-0.17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $1.002^{+0.002}_{-0.002}$                    |                                                  | 50-                                                    |
|                                                                                           | $R_9 > 0.94$ $R_9 < 0.$                                           | 94       | 2                                                             | $98.77^{+0.59}_{-0.73}$  | $97.70^{+0.32}_{-0.37}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $1.011^{+0.007}_{-0.008}$                    |                                                  |                                                        |
| Energy resolution $(\Delta \sigma / E_{MC})$                                              |                                                                   |          | 3                                                             | $99.32^{+0.51}_{-1.02}$  | $99.29^{+0.30}_{-0.42}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $1.000^{+0.006}_{-0.011}$                    | -1 -0.5 0 0.5 1                                  |                                                        |
| barrel                                                                                    |                                                                   |          | 4                                                             | $93.0^{+2.1}$            | $93.34^{+0.79}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.996^{+0.024}$                             | s = E <sub>reco</sub> / E <sub>kin.</sub> -1     | s = E <sub>reco</sub> / E <sub>kin.</sub> - 1          |
| endcap                                                                                    | 0.5% 0.4%                                                         |          | -                                                             | -2.3                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.027                                       | Photon scale agrees with expectation             | ons at the 1% level in EB (1.1% too hig                |
| Energy scale $((E_{data} - E_{MC})/E_{MC})$                                               |                                                                   |          |                                                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | and 3% in EE (3.7% too low) The ex               | xtracted scale is consistent between t                 |
| barrel                                                                                    | 0.1% $0.4%$                                                       |          |                                                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | different methods : spread = $1.3\%$ (           | (EB); 2% (EE)                                          |
| endcap                                                                                    | 0.3%   $0.4%$                                                     |          |                                                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | This method has been used in V-ga                | mma cross section measurement [4]                      |
|                                                                                           |                                                                   |          |                                                               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                  |                                                        |

3) Photon Energy Scale measurement

The measured offset of the energy scale is defined as :  $s = \frac{E_{measured}^{\gamma}}{E_{r}^{\gamma}} - 1$ 

This can be written using the three-body decay kinematics, assuming the muon momenta are perfectly measured :  $s = \frac{m_{\mu\mu\gamma}^2 - m_{\mu\mu}^2}{m_{z0}^2 - m_{\mu\mu}^2} - 1$ 

Distributions of s are presented below [3]. The simulation predicts 216  $\pm$  3 events, where 193 events have been selected in data. No crystal transparency loss corrections have been applied to the energy scale in the endcaps.



### **Conclusions & Perspectives**

The  $Z^0 \rightarrow \mu\mu\gamma$  channel is the only available Standard Model source of pure high-energy photons. Three current uses of this channel within the CMS collaboration have been presented.

Up to now, photon studies relied mainly on Z decays to electrons to examine in detail photon simulation, reconstruction and selection. With the available statistics recorded by CMS during 2011 (~4.5 /fb), the use of the  $Z^0 \rightarrow \mu\mu\gamma$  channel will be more effective than  $Z^0 \rightarrow e^+e^-$ . This is of particular importance for  $H \rightarrow \gamma \gamma$  searches.

#### References

[1] The CMS experiment at the CERN LHC, CMS Collaboration, J. Instrum. 2 (2008) So8004 [2] CMS Physics Technical Design Report Volume I : Detector Performance and Software, CMS Collaboration, CERN-LHCC-2006-001; CMS-TDR-008-1 [3] CMS ECAL 2010 performance results, CMS Collaboration, CMS-DP-2011-008

[4] Measurement of W-gamma and Z-gamma production in pp collisions at sqrt(s) = 7 TeV, CMS Collaboration, Phys Lett. B701 535-555 (2011). [arXiv:1105.2758 [hep-ex]], CMS-EWK-10-008

[5] Search for a Higgs boson decaying into two photons in the CMS detector, CMS Collaboration, CMS-PAS-HIG-11-010 [6] Search for a Higgs boson decaying into two photons in the CMS detector, CMS Collaboration, CMS-PAS-HIG-11-021

olivier.bondu@cern.ch

Hadron Collider Physics Symposium 2011, November 14-18, Paris, France