Analysis strategy for the SM Higgs boson search in the four-lepton final state in CMS A. Graziano for the CMS Collaboration

Department of Experimental Physics, University of Torino/INFN, Torino, Italy

The CMS experiment

The CMS experiment at the LHC collider at CERN has recorded 5.20 fb^{-1} of high-quality p-p collision data so far.

ZZ background control

Normalization to single Z:

$$N_{ZZ \to 4\ell} = \frac{\sigma_{q\bar{q} \to ZZ \to 4\ell}^{NLO} + \sigma_{gg \to ZZ \to 4\ell}^{LO}}{\sigma_{pp \to Z \to 2\ell}^{NNLO}} \cdot \frac{\varepsilon_{ZZ \to 4\ell}^{MC}}{\varepsilon_{Z \to 2\ell}^{MC}} \cdot N_{Z \to 2\ell}^{observed}$$

most systematic uncertainties cancel out (e.g. those related to luminosity) most diagrams are shared by the two processes

			-	
		channel	Normalization to Z rate	MC model simulation
	baseline	$N^{ZZ \rightarrow 4e}$	4.05 ± 0.26	4.07 ± 0.38
)		$N^{ZZ \rightarrow 4\mu}$	6.02 ± 0.40	6.23 ± 0.57
		$N^{ZZ \rightarrow 2e2\mu}$	9.87 ± 0.66	10.06 ± 0.93
)	high-mass	$N^{ZZ \rightarrow 4e}$	3.67 ± 0.25	3.70 ± 0.34
	_	$N^{ZZ \rightarrow 4\mu}$	5.22 ± 0.34	5.38 ± 0.48
		$N^{ZZ \rightarrow 2e2\mu}$	8.96 ± 0.59	9.14 ± 0.85
			1	

Zbb, Zcc, tt background control

Signal and backgrounds

- The considered signal final states are 4 μ , 4e, 2e2 μ
- The main backgrounds are ZZ, $t\overline{t}$, $Zb\overline{b}$, $Zc\overline{c}$, W+jets, Z+jets, QCD► Very clean signature:
- ► two pairs of same-flavour, opposite-sign, high- p_T isolated leptons pointing to the same vertex
- \blacktriangleright at least one Z is on-shell \rightarrow at least one pair of leptons has $m_{inv}(\ell \ell) \simeq m_Z$
- the SM Higgs is a scalar particle \rightarrow angular correlations among the final-state leptons

- \blacktriangleright same Z_1 selection as for signal events
- flavour, charge and isolation requirements are relaxed for the two other leptons
- the cut on the 3D impact parameter significance is reversed for these two leptons: $|SIP_{3D}| > 5$
- to propagate from the control region to the signal region:
 - ▶ $m_{2\ell} > 12 \ GeV, \ m_{4\ell} > 100 \ GeV$
 - combinatorial factor to account for lepton
 - flavour and charge combinations
 - ► acceptance factors from MC: $R_{SIP_{3D}} = A_{|SIP_{3D}| < 4} / A_{|SIP_{3D}| > 5}$ $R_{ISO} = A_{CombRellso<0.35}/A$

Z + jets background control

Cincle lenter false water measurements				
Single-lepton take rate measurement:	DI-			
same Z_1 selection as for signal events	Single fake region	Double fake region		
• exactly one additional 'fakeable object' (e, μ)				
► MET < 25 GeV to suppress the WZ contribution		Signal region	Single fake	

Event selection

- Requirements on *muons* and *electrons*
- trigger matching
- $\blacktriangleright p_T$ cuts
- $\blacktriangleright Z_1$ selection

- $\blacktriangleright Z_1 + 1$ lepton
- $ightarrow Z_1 + 2$ same-flavour, opposite-charge leptons
- ► 'Best 4ℓ-candidate' choice
- cut on relative isolation of leptons
- cut on significance of 3D impact parameter of leptons
- \blacktriangleright cuts on Z_1 , Z_2 kinematics
- ▶ 'baseline' selection: $20 < m_{Z_2} < 120 \text{ GeV}$
- 'high mass' selection: $60 < m_{Z_2} < 120 \text{ GeV}$

Fake rate = $\varepsilon(p_T^{\ell}, \eta^{\ell}) = \frac{N(\text{passing ID and isolation cuts})}{N(\text{fakeable objects})}$ **Control region:**

- \blacktriangleright same Z_1 selection as for signal events ► two other leptons of same flavour and same charge (to avoid signal contamination) ℓ_3^{\pm} , ℓ_4^{\pm} are looked for ▶ no ID, isolation requirements on them ▶ a cut is applied on $m(\ell_3 \ell_4)$ and on $m(4\ell)$
- **Extrapolation to the signal region:**

 $1.66 \text{ fb}^{-1} \text{ at} \sqrt{\text{s}} = 7 \text{ TeV}$

Exclusion limits for $\sqrt{s} = 7$ *TeV*, L = 1.66 *fb*⁻¹

Upper limits at 95% C.L. on $\sigma \cdot BR$ for a SM-like Higgs boson exclude cross sections from about one to two times the expected SM in the mass range ones $150 < m_H < 420 ~GeV$

ISO I⁺

egion

$ZZ \rightarrow 4\ell$ cross section measurement

The $ZZ \rightarrow 4\ell$ inclusive cross section has been measured after the cuts $60 < M_{Z_1} < 120 \ GeV \& 60 < M_{Z_2} < 120 \ GeV$ ('high mass' selection) as

$$\sigma(pp \rightarrow ZZ + X) imes BR(ZZ \rightarrow 4\ell) = rac{\sum (N_{obs}^{i_{ch}} - N_{bkg}^{i_{ch}})}{\mathcal{A}_{4\ell} imes arepsilon_{ZZ \rightarrow 4\ell} imes \mathcal{L}} = 20.84^{+6.8}_{-4.0} (\text{stat.}) \pm 0.54(\text{syst.}) \pm 0.94(\text{lumi.}) \ fb$$

This result should be compared with the theoretical value $\sigma_{TH}(pp \rightarrow ZZ + X) \times BR(ZZ \rightarrow 4\ell) = 28.32 \pm 2.57 \ fb$

References

CMS PAS 2011/015: The CMS Collaboration, "Search for a Standard Model Higgs boson in the decay channel $H \rightarrow ZZ \rightarrow 4\ell$

■ CMS PAS 2011/004: The CMS Collaboration, "Search for a Standard Model Higgs boson in the decay channel $H \rightarrow ZZ \rightarrow 4\ell$

■ CMS AN 2011/123: N. Amapane et al., "Search for a Standard Model Higgs boson in the decay channel $H \rightarrow ZZ^{(*)} \rightarrow 4I''$

HCP2011, November 14-18, 2011, Paris (F)

Alberto Graziano (alberto.graziano@cern.ch)