

CP violation in B_s decays @ LHCb

B. Souza de Paula on behalf of LHCb Collaboration HCP 2011 – 14/11/2011 - Paris

LHCb experiment

- Complementary to B Factories (look for B_s sector)
- Complementary to ATLAS and CMS
 - Dedicated to flavour physics in B (and D) sector(s)
 - LHCb searches for <u>indirect</u> effect of New Physics through loop diagrams sensitive to higher mass scales
 - Forward spectrometer as $b\overline{b}$ are boosted along beam axis $2 < \eta < 5$

LHCb experiment

B. Souza de Paula - HCP 2011 – 14/11/2011 - Paris

LHCb performance

- $b\bar{b}$ cross section in pp collisions at \sqrt{s} = 7TeV with 2010 data (284±53) μ b
- VELO silicon planes gets closer (8 mm) to beam in collision mode
 - Resolution of IP of $\sim 12 \,\mu$ m and proper time of ~ 40 fs
- 2 RICH detectors give better particle identification (p/K/ π) separation 2-100GeV/c
- Tracking system gives a resolution of $\sigma p/p \sim 0.5\%$ (2·100GeV/c)
- Allows a B mass resolution of ~7MeV/c² (ATLAS/CMS of ~20MeV/c²)
- In 2011: over 1 fb⁻¹ recorded: ~3.10¹¹ bb pairs produced
- Analysis presented today use up to \sim 350 pb⁻¹

CP in $B_s \rightarrow hh$

• Direct integrated CP asymmetry

$$A_{CP} = \frac{\Gamma(B_s \to K^+ \pi^-) - \Gamma(B_s \to K^- \pi^+)}{\Gamma(\overline{B_s} \to K^+ \pi^-) + \Gamma(B_s \to K^- \pi^+)}$$

 Correct for detection (magnet polarity) and production asymmetries

$$A_{CP} = A_{RAW} - A_D - \kappa A_P$$

- A_D extracted from $D^{*+} \rightarrow D^0(K\pi)\pi^+$ and $D^{*+} \rightarrow D^0(KK)\pi^+$
- A_P measured in $B^0 \rightarrow J/\psi K^*(K\pi)$ and $\kappa = 0.03$ is due to different mixing and proper time acceptance

-HCB-CONF-2011-042

A_{CP} in $B_s \rightarrow K^-\pi^+$

- First 3σ measurement of \mathcal{P} in B_s system
- Future goal (besides improving measurement with 1 fb⁻¹) to measure γ in time dependent $B_s \rightarrow KK$ analysis

CP in mixing

• When both B_s and $\overline{B_s}$ have the same final state we can have CP asymmetry in the interference between decay and mixing Φ_D

Flavour tagging

- To measure it we need to
 - Have good proper time resolution
 - Measure Δm_s
 - Know the original flavour of the meson

 $\Phi_s = \Phi_M \cdot 2 \Phi_D$

B. Souza de Paula - HCP 2011 – 14/11/2011 - Paris

Proper time resolution

- As B mesons are highly boosted along beam axis only z-axis resolution matters
- PV resolution depends on number of tracks 0.05-0.2 mm
- z resolution of secondary vertex ~0.3 mm
- Proper time resolution is modeled as triple gaussian with effective resolution of σ_{t} of 40-50 fs

• From $B_s \rightarrow J/\psi \phi$

Δm_s measurement

Tagging system

- Flavour Tagging is the procedure to determine the flavour of the reconstructed B meson at production
- Neural net to combine the taggers per event

B. Souza de Paula - HCP 2011 - 14/11/2011 - Paris

Tagging system

• Calibrate tagging using flavour specific decays as $B^+ \rightarrow J/\psi K^+$

$$\varepsilon_{tag} = \frac{N_R + N_W}{N_R + N_W + N_U} \qquad \omega = \frac{N_W}{N_R + N_W}$$
$$\varepsilon_{eff} = \varepsilon_{tag} (1 - 2\omega)^2$$

- Dilution depends on final state
- Only using opposite side taggers for $B_s \rightarrow J/\psi X$ CP analysis
- Typical tagging power $\varepsilon_{eff} = (2.1 \pm 0.4)\%$ (for $B_s \rightarrow J/\psi \phi$)

$B_s \rightarrow J/\psi \phi$

• Golden mode for Φ_s (Analogue in B_s sector to $B^0 \rightarrow J/\psi K_s$)

- Very small and well predicted in SM $\Phi_s = -2\beta_s = (-0.036 \pm 0.002)$ rad (CKM fitter)
- New Physics can add large terms to $\boldsymbol{\varPhi}_s$
- VV final state: Is not a CP eigenstate and needs to separate CP odd and even components with angular analysis
- $J/\psi \rightarrow \mu^+\mu^-$ and $\Phi \rightarrow K^+K^-$

B. Souza de Paula - HCP 2011 – 14/11/2011 - Paris

12

$B_s \rightarrow J/\psi \phi$

- Described using transversity basis
 - I=0,2 CP even
 - I=1 CP odd
- Polar angles θ , ψ and φ azimuthal angle of final states
- Parameters are extracted in a simultaneous multidimensional unbinned extended maximum likelihood fit: $\Delta \Gamma_s$, Γ_s and Φ_s
- Observables: reconstructed B_s mass and proper time, flavour tagging decision and angles

$B_s \rightarrow J/\psi \phi$ fit results

p-even sig. comp

LHCb preliminary

s = 7 TeV, L = 337 pb

- Main systematics due to acceptance of the angles
- Ambiguity in
 - Φ_ς→π-Φ_ς
 - $\Delta \Gamma_{s} \rightarrow -\Delta \Gamma_{s}$

 $\phi_s^{J/\psi\phi} = (0.13 \pm 0.18 \pm 0.07) rad$

 $\Gamma_s = (0.656 \pm 0.009 \pm 0.008) ps^{-1}$

 $\Delta \Gamma_s = (0.123 \pm 0.029 \pm 0.011) ps^{-1}$

B. Souza de Paula · HCP 2011 – 14/11/2011 · Paris

200

-2

Most precise result from single experiment Compatible with SM (-0.036±0.002)

2 φ [rad]

-HCB-CONF-2011-049

$B_s \rightarrow J/\psi f_0$

- Same phases of $B_s \rightarrow J/\psi \phi$
- f₀→π⁺π⁻
- Smaller yield but is CP eigenstate (no need for angular analysis)
- First observed by LHCb in 2011
- Similar fit to m and t
- Γ_s from $B_s \rightarrow J/\psi \phi$
- Δm_s from $B_s \rightarrow D_s \pi$

$$\phi_s^{J/\psi f_0} = (-0.44 \pm 0.44 \pm 0.02) rad$$

B. Souza de Paula - HCP 2011 – 14/11/2011 - Paris

Combining results

• Simultaneous fit to both $B_s \rightarrow J/\psi \phi$ and $B_s \rightarrow J/\psi f_0$ samples

$$\phi_s = (0.03 \pm 0.16 \pm 0.07) rad$$

+ambiguous solution

- Compatible with Standard Model
- Next steps (2012 winter)
 - Solve ambiguity fitting for S-wave phase
 - Include more data (3x more data)_{-0.4}
 - Include SS kaon tagging

CDF Public Note 10206 D0 CONF Note 6093 16

Conclusion

- Neutral meson mixing in channels with small Branching Fractions:
 - Precise predictions for SM small CP phases
 - Very sensitive to New Physics
 - B_s sector not as well measured as B_d
- LHCb can (and is already) measure precisely those asymmetries
- Detector is performing according to specifications
- Many B_s sector WA CP measurements already dominated by LHCb
 - First non-zero 3σ of direct \mathcal{P} in $B_s \rightarrow K\pi^+$
 - Δm_s from $B_s \rightarrow D_s \pi$
 - First 4σ non-zero $\Delta \Gamma$ s from $B_s \rightarrow J/\psi \Phi$
 - Φ s combining $B_s \rightarrow J/\psi \Phi$, $B_s \rightarrow J/\psi f0$

Prospects

- So far good agreement with Standard Model
- Update those results in near future (data sample recorded is 3x larger) and much more:
 - Solve ambiguity in $\boldsymbol{\Phi}_s$ and $\boldsymbol{\Delta} \boldsymbol{\Gamma}_s$
 - Similar analysis for penguin mode $B_s \rightarrow \phi \phi$ (even smaller CP in SM than $B_s \rightarrow J/\psi \phi$)
 - Measure γ from time dependent $B_s \rightarrow K^+ K^-$
- Another $\sqrt{s}=7$ TeV run in 2012

B. Souza de Paula - HCP 2011 - 14/11/2011 - Paris

Data and trigger

- Nominal luminosity of 2x10³² cm⁻²s⁻¹
- Operating above nominal and still don't lose lumi during the fill
- Trigger uses typical B decay signatures (high transverse momentum and impact parameter)
- In 2011: over 1 fb⁻¹ recorded (37 pb⁻¹ in 2010)
- About $3.10^{11} b\overline{b}$ pairs produced
- Analysis presented today use up to ~350 pb⁻¹

B. Souza de Paula - HCP 2011 - 14/11/2011 - Paris

Tagging calibration

• For each event an estimated probability of the tagging decision to be correct (η) is given by a neural net.

Calibration of η is needed to obtain an ω event per event

- Use per event mistag as observable $\omega = p_0 + p_1 \cdot (\eta \overline{\eta})$
- $B^+ \rightarrow J/\psi K^+$ used for calibration, and the kinematically similar $B^0 \rightarrow J/\psi K^*$ is used as crosscheck

MC ω distribution/calibration totally compatible with $B^0 \rightarrow J/\psi K_s$ Study correction function between actual mistag and calibrated mistag

ExpectedObtained
$$p_0 = \bar{\eta} = 0.35$$
 $p_0 = 0.333 \pm 0.025$ $p_1 = 1$ $p_1 = 0.71 \pm 0.36$

B. Souza de Paula - HCP 2011 - 14/11/2011 - Paris

21

8

Δm_s World Average

- World Average
 - $\Delta m_s = (17.731 \pm 0.045) \text{ps}^{-1}$

- Standard Model prediction
 - $\Delta m_s = (16.8^{+2.6}.1.5) \text{ps}^{-1}$

PRD.83, 036004 (2011)

• In SM

$$\phi_s = -2\beta_s = -2\arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right) = (-0.036 \pm 0.002)rad$$

• We measure
$$\phi_s = \phi_s^{SM} + \phi^{NP}$$

• Many NP terms can be added to Φ_s due to mixing: eg. SUSY, extra dimensions, 4th generation

 $B_{s} \rightarrow J/\psi \Phi$ Fit

• Signal pdf depends on acceptance, flavour tagging and proper time resolution

B. Souza de Paula · HCP 2011 – 14/11/2011 · Paris

Angles acceptance

- Polar and azimuthal angles from $B_s \rightarrow J/\psi \phi$ final state acceptance obtained from MC
- Deviation from uniform within 5%

Used in likehood fit