Di-boson results at ATLAS

Hadron Collider Physics Symposium 14-18 November 2011, Paris

P.-F. Giraud CEA Saclay On behalf of the ATLAS Collaboration

Introduction

- Standard model predicts couplings with 3 gauge bosons (TGC), fully constraint by the electro-weak symmetry
 - WWy and WWZ vertices are predicted, ZZy and ZZZ are forbidden
 - Sector of the theory not fully covered by previous measurements
- Beyond standard model physics could modify the cross sections and final state kinematics
- At LHC, TGCs may be studied by looking at the production of di-boson final states
 - Final states also produced in the t channel at tree level
- Di-bosons are a background of other searches
 - Higgs

Di-boson production at ATLAS

- Di-boson cross sections measured with the ATLAS detector
- Analyses presented here:
 - WW, WZ, ZZ: 1.0 fb⁻¹, 2011 data
 - Wy, Zy: 35 pb⁻¹, 2010 data
- Predicted cross sections: O(10pb)
- Concentrate on leptonic (e and μ) final states: small branching fraction, but clean signal

	$\sigma_{_{NLO}}$ (pb)	e/µ BF
WW	46	4.7%
WZ	17.2	1.5%
ZZ	6.5	0.5%
Wγ	333 (*)	22%
Ζγ	205 (*)	6.7%

(*) includes phase space cuts for definition of prompt photon

Background estimation: data driven methods

- One of the important category of background: QCD generated background
- Example: W+jets, Z+jets
- A jet may produce a "fake" prompt lepton or photon
 - Real lepton from heavy flavor jet, reduced with isolation cuts
 - Pion mis-identified as electron or photon, reduced with tight identification cuts
- Decide not to trust Monte-Carlo to estimate these backgrounds
- Data driven method:
 - Control region built by reversing isolation cuts, or particle identification cuts
 - Event yield extrapolated to signal region by use of a fake factor
 - Fake factor estimated from independent control sample (di-jet sample, or sample obtained from reversing another analysis cut)

$WW \to I \nu I \nu$

Signature: 2 leptons and E_T^{miss} Backgrounds are challenging: • Drell-Yan

- Top events
- W+jets
- Other diboson events

Selection:

- 2 leptons, p_T >20 GeV, p_T (leading e)>25 GeV,
- $|\eta| < (2.4, 2.47)$ (µ,e), isolation cuts, tight lepton ID
- m₁ > 15 GeV, m_{eµ} > 10 GeV, |m₁-m_z|>15 GeV
- E_{T,Rel}^{miss} > (45,40,25) GeV (μμ,ee,eμ)
- Jet veto: p_T >30 GeV, $|\eta|$ <4.5

Definition to reduce impact of mis-measurements

$WW \to I \nu I \nu$

Total selected events: 414 Background estimation: 169.8 ± 27.8

- W+jets: data driven, using fake lepton factors measured in a sample of di-jet events
- Top: semi-data driven, extrapolated from $N_{iet} \ge 2$ sample
- Drell-Yan: estimated with Monte-Carlo

Dominant systematics of background estimation: jet veto (jet energy scale) fake lepton factor measurement

Kinematic distributions are compatible with expectation from SM

$WW \to I \nu I \nu$

Define fiducial cross section to reduce systematic uncertainty: phase space cuts mimic analysis acceptance, different for the ee, µµ and eµ channels

Channels	expected σ^{fid} (fb)	measured $\sigma^{fid}(fb)$	$\Delta \sigma_{stat}$ (fb)	$\Delta \sigma_{syst}$ (fb)	$\Delta \sigma_{lumi}(\mathrm{fb})$
evev	66.8	90.1	\pm 18.9	± 11.3	± 3.3
μνμν	63.8	62.0	\pm 12.1	\pm 10.7	± 2.3
evμv	245.1	252.0	\pm 24.6	\pm 29.4	± 9.3

Total cross section extrapolated to complete phase space assuming kinematic distributions predicted from SM:

Channels	Total cross-section (pb)	$\Delta \sigma_{stat}(pb)$	$\Delta \sigma_{syst}(pb)$	$\Delta \sigma_{lumi}(\text{pb})$
evev	62.1	\pm 13.5	± 9.1	± 2.3
μνμν	44.7	\pm 8.7	\pm 7.7	\pm 1.7
evμv	47.3	± 4.8	± 6.2	\pm 1.8
Combined	48.2	± 4.0	± 6.4	\pm 1.8

SM prediction (NLO): 46 ± 3 pb

 $WZ \to |\nu||$

Signature: 3 leptons and E_T^{miss} 3 lepton requirement reduces most of background Dominant background: W/Z+jets

Selection:

- leptons, $p_{_{T}}{>}15$ GeV, $|\eta|{<}(2.5,2.47)$ (µ,e), isolation cuts, lepton ID
- $|m_{_{||}}-m_{_{Z}}|$ <10 GeV
- 3 leptons requirement
- lepton associated to W: p_T >20 GeV,
 - tighter lepton ID
- E_T^{miss} > 25 GeV
- M_T^W > 20 GeV

$WZ \rightarrow IvII$

Total selected events: 71 Estimated total background: 10.5 +3.0 -2.2

- W/Z+jets: data driven, using fake lepton factors obtained from control sample with reversed $E_{\tau}^{\rm miss}$ cut
- ZZ di-boson production: estimated from Monte-Carlo

Dominant systematic: fake lepton factor determination

Kinematic distributions are compatible with expectation from SM

$WZ \rightarrow IvII$

Fiducial cross section:

 $\sigma_{WZ \to \ell \nu \ell \ell}^{fid} = 118^{+18}_{-16}(\text{stat}) \,{}^{+6}_{-6}(\text{syst}) \,{}^{+5}_{-5}(\text{lumi}) \,\text{fb}$

Fiducial phase space defined with cuts that mimic analysis acceptance

Total cross section:

$$\sigma_{WZ}^{tot} = 21.1^{+3.1}_{-2.8}$$
(stat) $^{+1.2}_{-1.2}$ (syst) $^{+0.9}_{-0.8}$ (lumi) pb

Extrapolated to complete phase space using kinematic distributions predicted from SM

SM prediction (NLO): 17.2 $^{\scriptscriptstyle +1.2}_{\scriptscriptstyle -0.8}$ pb

Triple gauge coupling:

Accessible TGC terms in effective Lagrangian:

$$W \sim \left\{ \begin{array}{c} (g_1^{Z}, \kappa^{Z}, \lambda) = (1, 1, 0)_{SM} \\ z \end{array} \right\}$$

bitrary form factor with cut-

Arbitrary form factor with cutoff scale Λ =3 TeV: $\alpha(\hat{s}) = \frac{\alpha_0}{(1 + \hat{s}/\Lambda^2)^2}$

Frequentist confidence intervals are set on anomalous TGC using the cross section measurement.

 $ZZ \rightarrow IIII$

Signature: 4 leptons Background with this signature is very reduced: Z+jets, top

Selection:

- 2 lepton pairs (eeee), (ee $\mu\mu$), ($\mu\mu\mu\mu$): p_T >15 GeV, $|\eta|$ <(2.5,2.47) (μ ,e), isolation cuts, lepton ID • leading lepton p_T >(20,25) GeV (μ ,e)
- 66 < m_{_} < 116 GeV

$\mathsf{ZZ} \to []]]$

Total selected events: 12 Estimated total background: 0.3±0.3^{+0.4}_{-0.3}

- Illj events, the jet faking a prompt lepton
- estimated from data driven technique

Kinematic distributions are compatible with expectation from SM

$ZZ \rightarrow IIII$

 $L = 35 \text{ pb}^{-1}$

$W\gamma \rightarrow I\nu\gamma \ and \ Z\gamma \rightarrow Il\gamma$

Definition of signal: W/Z + a photon with: • E_{τ}^{γ} >15 GeV

- separation from closest lepton by ΔR >0.7
- isolation at parton level:

 $\epsilon_{n}^{h} = \Sigma E_{T} (\Delta R < 0.4) / E_{T}^{v} < 0.5$

8% of signal comes from photons generated at fragmentation

Selection:

- $Z \to II \text{ or } W \to I \nu \text{ candidate}$
- photon: E_{T} >15 GeV, $|\eta|$ <2.37, ΔR (closest lepton)>0.7
- photon isolation:
- $E_{T}^{iso} = \Sigma E_{T} (\Delta R < 0.4) < 5 \text{ GeV}$

$Wy \rightarrow Ivy and Zy \rightarrow Ily$

Total selected events: 192 Wy and 48 Zy candidates Background estimated with data driven technique when statistics sufficient:

- ~29% of Wy sample
- ~15% of Zy sample

Kinematic distributions are compatible with expectation from SM

$W\gamma \rightarrow I\nu\gamma ~and~Z\gamma \rightarrow Il\gamma$

	Experimental measurement	SM prediction		
	$\sigma^{ m fid}[m pb]$	$\sigma^{\rm fid}[{ m pb}]$	$\frac{\sigma(pp \rightarrow l \nu \gamma)}{\sigma(pp \rightarrow l^{\dagger} l \nu)}$	ATLAS
$pp \rightarrow e^{\pm} \nu \gamma$	$5.4 \pm 0.7 \pm 0.9 \pm 0.2$	4.7 ± 0.3	Theory (NLO)	$\int L dt = 35 \text{ pb}^{-1}$
$pp \to \mu^{\pm} \nu \gamma$	$4.4 \pm 0.6 \pm 0.7 \pm 0.2$	4.9 ± 0.3		J Data 2010 (√s = 7 TeV)
$pp \rightarrow e^+ e^- \gamma$	$2.2 \pm 0.6 \pm 0.5 \pm 0.1$	1.5 ± 0.1		
$pp \to \mu^+ \mu^- \gamma$	$1.4 \pm 0.3 \pm 0.3 \pm 0.1$	1.7 ± 0.1		H Electron channel
	$\sigma [{ m pb}]$	$\sigma[m pb]$		
$pp \to e^{\pm} \nu \gamma$	$41.1 \pm 5.7 \pm 7.1 \pm 1.4$	36.0 ± 2.3		▼ III ▼ Muon channel
$pp \to \mu^{\pm} \nu \gamma$	$33.0 \pm 4.6 \pm 5.5 \pm 1.1$	36.0 ± 2.3		
$pp \rightarrow l^{\pm} \nu \gamma$	$36.0 \pm 3.6 \pm 6.2 \pm 1.2$	36.0 ± 2.3	│	■ Combined
$pp \rightarrow e^+ e^- \gamma$	$9.9 \pm 2.7 \pm 2.3 \pm 0.3$	6.9 ± 0.5		
$pp \to \mu^+ \mu^- \gamma$	$5.6 \pm 1.4 \pm 1.2 \pm 0.2$	6.9 ± 0.5	0 2 4	6 8 10 12 14
$pp \rightarrow l^+ l^- \gamma$	$6.5 \pm 1.2 \pm 1.7 \pm 0.2$	6.9 ± 0.5		$\sigma_{w_{2}}/\sigma_{z_{2}}$
				vvy Zy

Fiducial cross section calculated with phase space cuts that mimic analysis acceptance

Total cross section extrapolated to complete phase space using kinematic distributions predicted from SM

Dominant systematic: photon reconstruction/ID efficiency

Ratio of cross sections used to minimize correlated systematic errors

Conclusion

- Di-boson final states have been observed and their cross-sections measured
- First limits on anomalous triple gauge couplings are derived

Backup

WW

Final State	$e^+e^-E_{ m T}^{ m miss}$	$\mu^+\mu^-E_{ m T}^{ m miss}$	$e^\pm \mu^\mp E_{ m T}^{ m miss}$	Combined
Observed Events	74	97	243	414
Background estimations				
Top(data-driven)	$9.5 {\pm} 0.3 {\pm} 3.6$	$12.3 \pm 0.4 \pm 4.7$	$36.8{\pm}1.3{\pm}14.0$	$58.6 {\pm} 2.1 {\pm} 22.3$
W+jets (data-driven)	$5.3{\pm}0.4{\pm}1.7$	$12.4{\pm}2.9{\pm}5.2$	$32.9 {\pm} 3.8 {\pm} 9.2$	$50.5{\pm}4.8{\pm}14.7$
Drell-Yan (MC/data-driven)	$18.7 {\pm} 1.9 {\pm} 1.9$	$19.2 \pm 1.7 \pm 2.1$	$16.0{\pm}2.8{\pm}1.7$	$54.0{\pm}3.7{\pm}4.5$
Other dibosons (MC)	$0.9{\pm}0.1{\pm}0.1$	$2.4{\pm}0.2{\pm}0.3$	$3.4{\pm}0.3{\pm}0.4$	$6.8{\pm}0.4{\pm}0.8$
Total Background	$34.4{\pm}2.0{\pm}4.4$	46.3±3.4±7.3	89.1±4.9±16.8	$169.8 {\pm} 6.4 {\pm} 27.1$
Expected WW Signal	$29.5 {\pm} 0.3 {\pm} 3.0$	$52.5 {\pm} 0.4 {\pm} 4.9$	$150.5 {\pm} 0.7 {\pm} 13.4$	$232.4{\pm}0.9{\pm}21.5$
Significance (S/\sqrt{B})	5.0	7.7	15.9	17.8

Table 6: Summary of observed events and expected signal and background contributions in the three di-lepton and combined channels. The first error is statistical, the second systematic. The central value and statistical uncertainty for the Drell-Yan process estimation is MC based while the systematic uncertainties are derived from a data-driven method.

WZ

Final State	$eee + E_{\rm T}^{\rm miss}$	$ee\mu + E_{\rm T}^{\rm miss}$	$e\mu\mu + E_{\rm T}^{\rm miss}$	$\mu\mu\mu + E_{\rm T}^{\rm miss}$	combined
Observed	11	9	22	29	71
ZZ	0.34 ± 0.07	1.03 ± 0.13	0.82 ± 0.12	1.40 ± 0.15	$3.55 \pm 0.24 \pm 0.17$
W/Z+jets	2.03 ± 0.38	0.64 ± 0.18	2.03 ± 0.38	0.44 ± 0.15	$5.14 \pm 0.59^{+2.97}_{-2.08}$
Тор	0.26 ± 0.10	0.31 ± 0.09	0.41 ± 0.12	0.60 ± 0.15	$1.58 \pm 0.23 \pm 0.10$
$W/Z + \gamma$	0.49 ± 0.28	_	0.56 ± 0.39	-	$1.05 \pm 0.48 \pm 0.08$
Total Background	3.08 ± 0.49	1.98 ± 0.24	3.82 ± 0.56	2.44±0.21	$10.5 \pm 0.8^{+2.9}_{-2.1}$
Expected Signal	7.55 ± 0.17	11.27 ± 0.20	12.12±0.22	18.16±0.27	49.1±0.4±3.02
Expected S/B	2.5	5.7	3.2	7.4	4.3

Details of the signal and background number of events

ΖZ

Channel	Observed	BG(data-driven)	Expected ZZ
$e^{+}e^{-}e^{+}e^{-}$	2	$0.01\substack{+0.03+0.05\\-0.01-0.01}$	$1.53 {\pm} 0.03 {\pm} 0.10$
$\mu^+\mu^-\mu^+\mu^-$	8	$0.3\pm0.3\pm0.3$	$3.03{\pm}0.04{\pm}0.06$
$e^+e^-\mu^+\mu^-$	2	$< 0.01^{+0.03}_{-0.01}$	$4.37 {\pm} 0.04 {\pm} 0.14$
$\ell^+\ell^-\ell^+\ell^-$	12	$0.3\pm0.3^{+0.4}_{-0.3}$	$8.9 \pm 0.1 \pm 0.3$

Details of the signal and background number of events