Z/W-Results @ LHCb

Yasmine Amhis On behalf of the LHCb Collaboration HCP Paris - 2011

Outline

- LHCb Overview
- -W & Z Production and PDF Sensitivity
- Preliminary Results $Z \rightarrow \mu\mu$ $Z \rightarrow \tau\tau$ $W \rightarrow \mu\nu_{\mu}$
- Summary and Outlook

Looking forward

- Designed to look at CP violation and rare decays in beauty and charm hadrons @ LHC
- Fully instrumented within : $1.9 < \eta < 4.9$
- Muon reconstruction suited for EW : $P_t > 1 \text{ GeV/c}, m_{uu} > 2.5 \text{ GeV/c}^2$

Looking forward

- Complementary η range to ATLAS & CMS

- Overlap for cross check $1.9 < \eta < 2.5$
- Unique to LHCb $2.5 < \eta < 4.9$

Datasets

 $\int L_{2010} = (37.1 \pm 1.3) \text{ pb}^{-1} (Z \rightarrow \mu\mu, Z \rightarrow \tau\tau \text{ and } W \rightarrow \mu\nu \text{ analyses})$ $\int L_{2011} \sim 210 \text{ pb}^{-1} (Z \rightarrow \tau\tau \text{ analysis})$

PDF @LHCb

-LHCb's forward acceptance provides very interesting possibilities for PDF studies
 -Take large-x from one proton and a small-x from the other

- Probe two distinct regions in
 (x, Q²) space
- -Can probe the low-x, high-Q² region inaccessible to other experiments
- Explore with W, Z (x of 10^{-4} , 10^{-1}) and low-mass Drell-Yan (x >10⁻⁶)

$$Q^2 = M^2$$
, $x_{1,2} = \frac{M}{\sqrt{s}} \cdot e^{\pm y}$

W & Z Production and PDFs

Theoretical predictions

Partonic cross-sections known

@ NNLO to 1%

»PDF uncertainty dominates @ large rapidities (1% @ y<2, 6-8% @ y~5)</p>

$$\underbrace{\sigma(x,Q^2)}_{hadronic \, x-sec.} = \sum_{a,b} \int_{0}^{1} dx_1 dx_2 \underbrace{f_a(x_1Q^2)f_b(x_2Q^2)}_{PDFs2-8\%} \underbrace{\hat{\sigma}(x_1,x_2,Q^2)}_{partonic \, x-sec. : NNLO1\%}$$

> Experimental measurements

- »Clean signature
- »Easily reconstructible final state
- »Low statistical and systematic errors

Cross-section measurements @ LHCb can constrain PDFs

W & Z Production and PDFs

Cancel or highlight PDF uncertainties with ratios

A₊₋ = (dσ_{W+} - dσ_{W-}) / (dσ_{W+} +dσ_{W-}) → Tests u_V and d_V difference

 \mathbf{R}_{+-} = dσ_{W+} / dσ_{W-} → Tests d_V/u_V ratio

R_{WZ} = dσ_{W+-} / dσ_Z→Almost insensitive to PDFs
precise test of SM

$$Z \rightarrow \mu \mu$$

Trigger : Single muon trigger: $P_t > 10$ GeV/c

Reconstruction: 2 reconstructed muons

$$\begin{split} P_t &> 20 \; GeV/c \\ 2.0 &< \eta < 4.5 \\ 60 \; GeV/c^2 &< m_{\mu\mu} < 120 \; GeV/c^2 \end{split}$$

Backgrounds :

 $Z \rightarrow > \tau\tau = 0.61 \pm 0.04 \text{ (MC)}$ Heavy flavour = 4.3 ± 1.7 (Data) π/K mis-ID = 0 ± 1 (Data)

 $N_{Candidates} = 1966 \pm 44$ $N_{Background} = 4.9 \pm 2.0$

$Z \rightarrow \tau \tau$

Single muon trigger: $P_t > 10 \text{ GeV/c}$

Both τ decay to muons

One τ decays to μ , one to e

2 reconstructed isolated muons

- $P_{t,1} > 20 \text{ GeV/c}, P_{t,2} > 5 \text{ GeV/c}$
- $2.0 < \eta < 4.5$
- $\Delta \phi > 2.7$
- Cone P_t asymmetry (R=0.5) > 0.8

-Muon P_t asymmetry > 0.2 -Impact parameter significance > 4 - $m_{uu} < 80 \text{ GeV/c}^2$ 1 reconstructed & isolated μ &e

- $P_{t, \mu} > 20 \text{ GeV/c}, P_{t,e} > 5 \text{ GeV/c}$ - 2.0 < η < 4.5
- $-\Delta \phi > 2.7$
- Cone P_t asymmetry (R=0.5) > 0.8

Backgrounds

 $EW = 5.5 \pm 1.8$ (Data) QCD = 1.6 ± 1.3 (Data)

 $N_{Candidates} = 33 \pm 6$

Backgrounds $EW = 3.0 \pm 1.2 (MC)$ $QCD = 9.5 \pm 3.0 (Data)$

100

m_{ue} [GeV/c²]

 $N_{Candidates} = 81 \pm 9$

$W \rightarrow \mu v_{\mu}$

Trigger :Single muon trigger: $P_t > 10 \text{ GeV/c}$

Reconstruction :

1 reconstructed & isolated muon $P_t > 20 \text{ GeV/c}$ $2.0 < \eta < 4.5$ Cone P_t (R=0.5) < 2 GeV/c (charged & neutral information)

Backgrounds:

 $\gamma^*/Z \rightarrow \mu\mu$ (MC) W $\rightarrow \tau\nu$ and Z $\rightarrow \tau\tau$ (MC) K/ π punchtrough (Data) K/ π decay in flight (Data) Heavy flavour (Data)

$$R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$$

Yasmine Amhis - HCP 2011

$W \rightarrow \mu v_{\mu}$

- Specific cuts implemented to reduce each background component
- γ*/Z→μμ
 - No extra muons with $P_t > 5 \text{ GeV/c}$
- W $\rightarrow \tau v$, Z $\rightarrow \tau \tau$ and Heavy flavour
 - Impact parameter < 40 mm
- K/ π punchtrough
 - $E_{E+H} / P < 4\%$
- K/ π decay in flight
 - Largest residual background besides $Z \rightarrow \mu\mu$ with one muon outside the acceptance.

• Fit positive and negative muon P_t spectra in data to expected shapes for signal and backgrounds in 5 η bins

 $\mathcal{W} \rightarrow \mu \nu_{\mu}$

- $= 15608 \pm 125$
- = 12301±111
- ~ 80%
- ~ 78%

Efficiencies

The cross-section for boson production can be expressed as

$$\sigma = \frac{N_{Candidates} - N_{Background}}{A \cdot \varepsilon_{Trigger} \cdot \varepsilon_{Tracking} \cdot \varepsilon_{ID} \cdot \varepsilon_{Selection} \cdot \int L}$$

Measurements performed in the forward region $(2.0 < \eta < 4.5)$ for leptons with $P_t > 20 \text{ GeV/c} \rightarrow A = 1$ (except for $Z \rightarrow \tau\tau$, obtained from MC) Efficiencies determined from data and cross checked with simulation

Selection efficiency

 $Z \rightarrow \mu\mu$ selection criteria define the measurement kinematic region $Z \rightarrow \tau\tau$: determined from MC

W \rightarrow µv: measured from Z \rightarrow µµ data with 1 muon masked

Efficiencies

Efficiencies determined with a Tag&Probe method in $Z \rightarrow \mu\mu$ samples

Trigger

Tag:triggered muonProbe:offline identified muon

Tracking (electron from MC) Tag: identified muon track Probe: trajectory from muon stub and minimal tracking information

Particle ID

Tag:identified leptonProbe:reconstructed track

Efficiencies flat in φ , P_t, and #PV No evidence for charge bias Correction vs η

Background error large for W because of uncertainty on shapes Efficiency uncertainties dominated by limited statistics

Source	Ζ-> μμ	Ζ->ττ(μμ)	Z->ττ(μe)	W+-> $\mu^+\nu_{\mu}$	₩ ⁻ ->μ⁻ν _μ
Background	0.4	7	5	1.6	1.6
Shape (Fit)	-	-	-	1.9	1.7
Efficiency	5.1	9	8	2.5	2.3
Acceptance	-	2	5	-	-
FSR	0.3	0.2	0.2	0.2	0.2
Systematic	5.1	11	10	3.5	3.2
Luminosity	3.5	5.1		3.5	
Statistical	2.1	17	12	0.9	1.1

Relative errors are quoted

Z Cross-Section

Kinematic range: 2.0 < η_{μ} < 4.5, $P_{t,\mu}$ > 20 GeV/c and 60 < $m_{\mu\mu}$ < 120 GeV/c²

 $σ_{Z->\mu\mu} = 74.9 \pm 1.6_{stat} \pm 3.8_{syst} \pm 2.6_{lumi} \text{ [pb]}$ $σ_{Z->\tau\tau} = 82 \pm 8_{stat} \pm 7_{syst} \pm 4_{lumi} \text{ [pb]}$ $\Gamma(Z->\tau\tau) / \Gamma(Z->\mu\mu) = 1.09 \pm 0.17$

W Cross-Section

Comparisons

> All W and Z observations are consistent with NNLO predictions

Improvements on PDFs

Central and forward measurements of the W charge asymmetry will reduce the PDF uncertainty in both the large and small x regions

Summary and Outlook

- Cross-sections and ratios of W and Z measured @ 7TeV in the kinematic range $2.0 < \eta < 4.5$ and $P_t > 20$ GeV/c
- All observations consistent with the current NNLO predictions
- Collected 1.1 fb⁻¹ in 2011
 → improved efficiency and background knowledge
- Probe PDFs in previously unexplored regions
- Distinguish different PDF models