CKM matrix and CP violation ~theory~

Emi KOU (LAL/IN2P3-Orsay)

Hadron Collider Physics Symposium 2011 Amphi des Cordeliers, Paris 14th-18th November 2011

- SM is a very concise model which incorporates:
 - ✓ Natural suppression of FCNC (i.e. GIM mechanism)
 - ✓ A source of CP violation in the V_{CKM} matrix (i.e. KM mechanism)

$$V_{\rm CKM} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4) + A\lambda^4(1/2 - \rho - i\eta)$$

- SM is a very concise model which incorporates:
 - ✓ Natural suppression of FCNC (i.e. GIM mechanism)
 - ✓ A source of CP violation in the V_{CKM} matrix (i.e. KM mechanism)

β is measured to be around (21.7±0.64)° HFAG
Improvement in γ measurement is on-going (B factories, LHCb).
Issues in V_{ub} measurements. Improvement in the branching ratio measurement of B→TV can be done (SuperB factories).

New physics contributions to the $b \rightarrow s$ transitions

★B_s oscillation (B_s→J/ ψ Φ and A_{SL}) ★CP measurement with b→sg penguin process ★CP and polarisation measurement of b→sγ

Oscillation in B_q System

When Γ_{12} is real, $\zeta_q = -\Phi_q$

HFAG

Mass matrix of B_q system:

 $\Delta \Gamma_a$

$$\mathcal{H} = \mathbf{M} - \frac{i}{2} \mathbf{\Gamma} = \begin{pmatrix} M_{11} - \frac{i}{2} \Gamma_{11} & M_{12} - \frac{i}{2} \Gamma_{12} \\ M_{21} - \frac{i}{2} \Gamma_{21} & M_{22} - \frac{i}{2} \Gamma_{22} \end{pmatrix} \qquad \begin{pmatrix} \phi_q \equiv arg[M_{12}] \\ \zeta_q \equiv arg[\Gamma_{12}] - arg[M_{12}] \end{pmatrix}$$

Using CPT invariance, we find the mass eigenstate $P_{\rm I}$ and $P_{\rm 2}$

$$|P_1\rangle = p|P^0\rangle + q|\overline{P}^0\rangle; \qquad \frac{q}{p} = \pm \sqrt{\frac{M_{12}^* - \frac{i}{2}\Gamma_{12}^*}{M_{12} - \frac{i}{2}\Gamma_{12}}}$$
$$|P_2\rangle = p|P^0\rangle - q|\overline{P}^0\rangle; \qquad \frac{q}{p} = \pm \sqrt{\frac{M_{12}^* - \frac{i}{2}\Gamma_{12}}{M_{12} - \frac{i}{2}\Gamma_{12}}}$$

Experimental measurements are carried out for the observables

 $\equiv \Gamma_1 - \Gamma_2 = 2|\Gamma_{12}|\cos\zeta_q$

 $\frac{q}{p} \simeq e^{-i\phi_q} \left(1 + \frac{\Delta\Gamma_q}{2\Delta M_q} \tan\zeta_q \right)$

 $\overline{\Delta M_a} \equiv M_2 - M_1 = -2|M_{12}|$

 $\left| \frac{q}{p} \right| \simeq 1 + \frac{\Delta \Gamma_q}{2\Delta M_q} \tan \zeta_q$

 $\Delta M_d = (0.507 \pm 0.004) \text{ ps}^{-1},$ $\Delta M_s = (17.77 \pm 0.19 \pm 0.07) \text{ ps}^{-1}$

CP violation

q/⊅≠l

Golden-Channels to measure q/p from timedependent CP asymmery $B_d \rightarrow c\overline{c}K_s (\Phi_d=2\beta): sin2\beta=0.676\pm0.020$ $B_s \rightarrow J/\Psi\Phi (\Phi_d=2\beta_s): Tevatron, LHCb$ $*\Delta\Gamma/\Delta M$ is non-negligible for B_s

> Di-lepton charge asymmetry $A_{SL}^{d}=-0.0049\pm0.0038$ $A_{SL}^{s}=-0.0089\pm0.0062$

Recent measurements of B_s Oscillation

-0.6└---3

combined

-2

-1

 $\phi_s^{J/\psi\phi} = -2\beta_s^{J/\psi\phi}$ [rad]

 Φ_s and A_{SL}^s

-2

-1

Ω

 $\phi_*^{J/\psi\phi} = -2\beta_*^{J/\psi\phi}$ [rad]

-0.6 ┕ -3

Recent measurements of B_s Oscillation

Recent measurements of B_s Oscillation

$$R \equiv \frac{\langle B_s^0 | \mathcal{H}_{\text{eff}}^{\text{SM}} + \mathcal{H}_{\text{eff}}^{\text{NP}} | \overline{B}_s^0 \rangle}{\langle B_s^0 | \mathcal{H}_{\text{eff}}^{\text{SM}} | \overline{B}_s^0 \rangle} = 1 + r^{\text{NP}} e^{i\phi^{\text{NP}}}$$

$$R \equiv \frac{\langle B_s^0 | \mathcal{H}_{\text{eff}}^{\text{SM}} + \mathcal{H}_{\text{eff}}^{\text{NP}} | \overline{B}_s^0 \rangle}{\langle B_s^0 | \mathcal{H}_{\text{eff}}^{\text{SM}} | \overline{B}_s^0 \rangle} = 1 + r^{\text{NP}} e^{i\phi^{\text{NP}}}$$

$$R \equiv \frac{\langle B_s^0 | \mathcal{H}_{\text{eff}}^{\text{SM}} + \mathcal{H}_{\text{eff}}^{\text{NP}} | \overline{B}_s^0 \rangle}{\langle B_s^0 | \mathcal{H}_{\text{eff}}^{\text{SM}} | \overline{B}_s^0 \rangle} = 1 + r^{\text{NP}} e^{i\phi^{\text{NP}}}$$

$$R \equiv \frac{\langle B_s^0 | \mathcal{H}_{\text{eff}}^{\text{SM}} + \mathcal{H}_{\text{eff}}^{\text{NP}} | \overline{B}_s^0 \rangle}{\langle B_s^0 | \mathcal{H}_{\text{eff}}^{\text{SM}} | \overline{B}_s^0 \rangle} = 1 + r^{\text{NP}} e^{i\phi^{\text{NP}}}$$

$$R \equiv \frac{\langle B_s^0 | \mathcal{H}_{\text{eff}}^{\text{SM}} + \mathcal{H}_{\text{eff}}^{\text{NP}} | \overline{B}_s^0 \rangle}{\langle B_s^0 | \mathcal{H}_{\text{eff}}^{\text{SM}} | \overline{B}_s^0 \rangle} = 1 + r^{\text{NP}} e^{i\phi^{\text{NP}}}$$

$\beta(\Phi_I)$ measurements with $b \rightarrow s$ gluon decay channels

Time dependent CP asymmetry in the B_d system

$\beta(\Phi_I)$ measurements with $b \rightarrow s$ gluon decay channels

Time dependent CP asymmetry in the B_d system

$\beta(\Phi_{I}) \text{ measurements with } \sin(2\beta^{\text{eff}}) \equiv \sin(2\varphi_{I}^{\text{eff}}) \stackrel{\text{Heat}}{\underset{PR \in I}{Beau}}$ $b \rightarrow s \text{ gluon decay channels}$ $b \rightarrow channels$ $b \rightarrow ccs \quad World \quad Average \quad 0.26 \pm 0$

▶B factories measured various channels.

The experimental errors are statistic dominant. Thus, SuperB factories can improve the measurement significantly.

Theoretical errors for some of the channels are still under discussions.

Similar study can be done for the B_s system with, e.g. $B_s \rightarrow \Phi \Phi$, $B_s \rightarrow \eta' \Phi$ etc.

New physics contributions for box (B_q oscillation) and penguin can be significantly different.

-2	-1		0	-	1 2
└ <u></u>	Average :			_Τσ	0.02 ± 0.07
			-		$0.00 \pm 0.13 \pm 0.03_{-0.13}$
					$0.80 \pm 0.08 \pm 0.03$
····'ʉՉ.,	Average				0.01 ± 0.33
	Babar			0.0	$1 \pm 0.31 \pm 0.05 \pm 0.09$
Ζ ̈́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́	Average	· • · • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		0.97 -0.52
	BaBar			र १	0.97 -0.03
β ^μ	A <mark>verage :</mark>				-0.72 ± 0.71
0	B <mark>aBar</mark>				$-0.72 \pm 0.71 \pm 0.08$
, s×	Average				0.20 ± 0.53
Υ Υ	BaBar			0.2	$0 \pm 0.52 \pm 0.07 \pm 0.07$
	Average		<u> </u>		0.48 ± 0.53
·····	BaBar			0.4	$B \pm 0.52 \pm 0.06 \pm 0.10$
- <u>-</u>	Average !				0.62 +0:11
	Belle				$0.63^{+0.18}_{-0.10}$
	BaBar		(~	1	0.40 ± 0.24 $0.60^{+0.16}$
3	Average		L f		$0.11 \pm 0.40 \pm 0.07$ 0 45 + 0 24
\mathbf{x}	Relle		A N		$0.03_{-0.29} \pm 0.02$
d.	RaBar			1	
	Belle			 ($0.04 - 0.25 \pm 0.09 \pm 0.10$
↓ vs	Babar				$0.35_{-0.31}^{+0.19} \pm 0.06 \pm 0.03$
∺	Average ;			.	0.57 ± 0.17
	Belle				$0.67 \pm 0.31 \pm 0.08$
	BaBar				$0.55 \pm 0.20 \pm 0.03$
s S	Average				0.74 ± 0.17
↓ vs	Belle		<u>↓ </u>	· >	$0.30 \pm 0.32 \pm 0.08$
	BaBar		<mark> </mark> Ĉ		$-10.90^{+0.18}_{-0.20}$
م ع`	Average				0.59 ± 0.07
Υ Υ	Belle				$0.64 \pm 0.10 \pm 0.04$
	BaBar			L	$0.57 \pm 0.08 \pm 0.02$
ф (Average		. <u> </u>	Â	$0.30_{-0.10}$
° ∕	Belle				$0.20 \pm 0.20 \pm 0.03$
D→CCS	BaBar	laye		- · - · - ·	0.00 ± 0.02
h and	Morld Avia	rano		1	0.68 ± 0.02

New Physics contributions to $\beta(\Phi_1)$ in b \rightarrow s gluon decay channels

Khalil, E.K. PRD62

New Physics contributions to $\beta(\Phi_1)$ in b \rightarrow s gluon decay channels

Ball, Khalil, E.K. PRD69

New Physics contributions to $b \rightarrow s\gamma$

- The b →sγ process is a good probe of fundamental properties of SM as well as BSM (top mass, new particle mass etc...).
- However, this polarisation of b \rightarrow s γ has never been confirmed at a high precision yet!!

New Physics contributions to $b \rightarrow s\gamma$

- The b →sγ process is a good probe of fundamental properties of SM as well as BSM (top mass, new particle mass etc...).
- However, this polarisation of b →s γ has never been confirmed at a high precision yet!!

New Physics contributions to $b \rightarrow s\gamma$

Conclusions

- The B factory measurements of $sin 2\beta(2\Phi_1)$ showed that the complex phase in the CKM matrix seems to be the dominant source of the CP violation in the flavour observable.
- However, there are still plenty of room left for new physics!
- We discussed new physics contributions to the various
 b→s transitions.

★B_s oscillation (B_s→J/ $\psi\Phi$ and A_{SL}) ★CP measurement with b→sg penguin process ★CP and polarisation measurement of b→sγ

• Combining these different measurements will be useful to pin down the new physics effects in flavour physics.

Polarisation determination of $b \rightarrow s\gamma$

Photon polarization determination: 3 methods

There are 3 methods proposed to measure the ratio $\mathcal{M}_R/\mathcal{M}_L$ ($\simeq 0$ in the SM):

• Method 1: time-dependent *CP* asymmetry in $B^0 \to K^{*0}(\to K_S \pi^0) \gamma$ [Atwood et al., Phys.Rev.Lett.79 ('97)]

$$S_{f\gamma} = -\xi_f \frac{2|\mathcal{M}_L \mathcal{M}_R|}{|\mathcal{M}_L|^2 + |\mathcal{M}_R|^2} \sin(\phi_M - \phi_L - \phi_R)$$

2 Method 2: transverse asymmetries in B⁰ → K^{*0}(→ K⁻π⁺)ℓ⁺ℓ⁻ [Kruger&Matias, Phys.Rev.D71 ('05); Becirevic&Schneider, arXiv:1106.3283 ('11)]

$$\mathcal{A}_{T}^{(2)} = -\frac{Re[\mathcal{M}_{R}\mathcal{M}_{L}^{*}]}{|\mathcal{M}_{R}|^{2} + |\mathcal{M}_{L}|^{2}}, \quad \mathcal{A}_{T}^{(im)} = \frac{Im[\mathcal{M}_{R}\mathcal{M}_{L}^{*}]}{|\mathcal{M}_{R}|^{2} + |\mathcal{M}_{L}|^{2}}$$

3 Method 3: K_1 three-body decay method in $B \to K_1(\to K\pi\pi)\gamma$ [Gronau et al., Phys.Rev.Lett.88, Phys.Rev.D66 ('02)]

$$\lambda_{\gamma} = \frac{|\mathcal{M}_R|^2 - |\mathcal{M}_L|^2}{|\mathcal{M}_R|^2 + |\mathcal{M}_L|^2}$$

Polarisation determination of $b \rightarrow s\gamma$

Future constraints on right-handed currents

3 different methods give different constraints:

1 $\mathcal{A}_{CP}(B \rightarrow K_{S}\pi^{0}\gamma)$: $S^{e\times p}_{K_{S}\pi^{0}\gamma} = -0.15 \pm 0.2$ [HFAG('10)] $\sigma(S_{K_{S}\pi^{0}\gamma})^{SuperB} \approx 0.02 \text{ at}$ 75 ab⁻¹

 2 λ_γ potential measurement from ω-distribution in B → K₁(1270)γ: σ(λ_γ)th ~ 0.2
 3 A⁽²⁾_T and A^(im)_T potential measurement from the angular analysis of

 $B^0
ightarrow K^{*0} (
ightarrow K^- \pi^+) \ell^+ \ell^-$: $\sigma (A_T^{(2)})^{LHCb} pprox 0.2 ext{ at } 2 ext{ fb}^{-1}$

