

CKM angle measurements CP violation in charm

Malcolm John University of Oxford

Quark couplings to the weak current

2

Quark couplings to the weak current

B_u,B_d decays

angle $\approx 0.001\eta$

charm decays

Quark couplings to the weak current

• Complementary probes of the CKM prescription: • Are the triangles closed? - relates directly to the unitarity of the matrix. • Do the have the same area? - *does the charm triangle have any area?* • High statistics are needed to probe further

angle $\approx 0.001\eta$

charm decays

LHCb

A detector capable of identifying specific decay modes of beauty and charm hadrons from the huge number heavy mesons produced at the LHC.

- $\sigma(b\bar{b}) = 284 \pm 53 \ \mu b^{(1)}$
- $\sigma(c\bar{c}) = 6100 \pm 930 \ \mu b^{(2)}$ $N_{4\pi}(c\bar{c})/\sec^{(\star)} = 1.5M$
- $N_{4\pi}(b\bar{b})/\sec^{(*)} = 70k$

 $^{(*)}\mathcal{Q} \approx 2.10^{32} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$

⁽¹⁾ arXiv:1009.2731

⁽²⁾ LHCb-CONF-2010-013

LHCb instruments 2< η_{LHC} <5

CKM angles

CKM angles: the story so far (courtesy of CKMFitter)

• Large CP violation is seen in B decays. A decade of excellence from the B-factories.

CKM angles: the story so far (courtesy of CKMFitter)

• Large CP violation is seen in B decays. A decade of excellence from the B-factories.

- $\beta = 21.38 + 0.79_{-0.77}$ primarily from studying *CP* violation in $B \rightarrow J/\psi K_S^0$
- α is also well measured: 89.0 $^{+4.4}_{-4.2}$
- γ not well known; due to the rarity of the modes which are sensitive: *amplitude* $\propto V_{ub}$

13

Precision of less than 5° expected by end 2012

$B^+ \longrightarrow (\pi^+ K^-)_D K^+$

$B \rightarrow D\pi\pi\pi$ and $B \rightarrow DK\pi\pi$ decays

First observation of the Cabibbo-suppressed, five-track final states

• The Cabibbo-suppressed decays hold similar promise for γ as B \rightarrow DK (but ¹/₄ statistics)

$$\frac{\mathcal{B}(B^- \to D^0 K^- \pi^+ \pi^-)}{\mathcal{B}(B^- \to D^0 \pi^- \pi^+ \pi^-)} = (9.6 \pm 1.5 (\text{stat}) \pm 0.8 (\text{syst})) \times 10^{-2}$$

 $\frac{\mathcal{B}(B^- \to D^0 \pi^- \pi^+ \pi^-)}{\mathcal{B}(B^- \to D^0 \pi^-)} = 1.26 \pm 0.07 \text{(stat)} \pm 0.12 \text{(syst)}$

$\Lambda_b \rightarrow D^0 p K$

- These baryon decays exhibit similar quark-level interference and eventual sensitivity to γ
 - First step taken: observation of the 'favoured', Cabibbo-suppressed transition (right)

$B_s \rightarrow D_s K^{\pm}$

• γ can be extracted B_s decays with this mode

- Both $b \rightarrow c$ and $b \rightarrow u$ diagrams are colour allowed
- But the B_s oscillates so a time dependent analysis is required (also need B_s mixing phase)

Future of $sin(2\beta)$: $B_s \rightarrow J/\psi K_S^0$

- The unitarity triangle shows some tension between | V_{ub} | and sin(2β).
- How much of "sin(2β)" is sin(2β)? How large are the hadronic penguin contributions?
- Could be eventually deduced by comparing $B_d \rightarrow J/\psi K_{S^0}$ and its U-spin partner: $B_s \rightarrow J/\psi K_{S^0}_{arXiv:1010.0089}$
- First step: confirmation in LHCb dataset.

LHCb-CONF-2011-048

 $(3.78 \pm 0.58 \pm 0.20 \pm 0.30) \times 10^{-2}$

CP violation in charm

CP violation in charm

- Generically speaking, one can look for *CP* violation in:
 - Mixing: $\Gamma(\overline{D^0} \rightarrow D^0) \neq \Gamma(D^0 \rightarrow \overline{D^0})$ "Indirect"
 - Decay: $A(D^0 \rightarrow f) \neq A(D^0 \rightarrow f)$
 - Interference of the two

"Direct"

Mixing is the D system is establish, though no single 5σ measurement

$$D_{1,2} = p|D^0\rangle \pm q|\bar{D}^0\rangle$$

$$x = (m_2 - m_1)/2\Gamma \qquad y = (\Gamma_2 - \bar{D}^0)/2\Gamma$$

No evidence yet of CP violation in the charm system

 $\Gamma_1)/2\Gamma$

Pursuing CP violation in mixing

Define

$y_{CP} = \frac{\Gamma(D^0 \to K^+ K^-)}{\Gamma(D^0 \to K^- \pi^+)} - 1$

• In the absence of CP violation, $y_{CP} = y$. Ultimately need both to demonstrate CPV in mixing

• With 28 pb⁻¹

LHCb-CONF-2011-054

 $y_{CP} = (5.5 \pm 6.3_{stat} \pm 4.1_{syst}) \times 10^{-3}.$

 $WA_{HFAG} = (1.11 \pm 0.22)\%$

Pursuing CP violation in mixing

• Another interesting observable:

- $A_{\Gamma} = \frac{\Gamma(D^0 \to K^+ K^-) \Gamma}{\Gamma(D^0 \to K^+ K^-) + \Gamma}$
- $A_{\Gamma} \neq 0$ would a clear sign of CP violation
- D* events used. Charge of slow pion tags the D flavour
- A "swimming" technique is used to estimate the trigger and acceptance lifetime bias

$$\frac{\Gamma(\bar{D}^0 \to K^+ K^-)}{\Gamma(\bar{D}^0 \to K^+ K^-)}$$

Direct CPV in charm

- $D^{\pm} \rightarrow K^{\pm} K^{\pm} \pi^{\pm}$ is a singly-Cabibbo suppressed where competing tree and penguin diagrams could be of similar magnitude.
 - Direct CPV is possible if two processes, with different weak and strong phases interfere
- $D_s \rightarrow K^+ K^- \pi^{\pm}$ is used a a control channel (Cabibbo favoured). Blind signal.

Direct CPV in charm

- $D^{\pm} \rightarrow K^{\pm} K^{\pm} \pi^{\pm}$ is a singly-Cabibbo suppressed where competing tree and penguin diagrams could be of similar magnitude.
 - Direct CPV is possible if two processes, with different weak and strong phases interfere
- $D_s \rightarrow K^+ K^- \pi^\pm$ is used a a control channel (Cabibbo favoured). Blind signal.

A range of binning schemes tried

Binning	Fitted mean	Fitted width	χ^2/ndf	p-value (%)
Adaptive I	0.01 ± 0.23	1.13 ± 0.16	32.0/24	12.7
Adaptive II	-0.024 ± 0.010	1.078 ± 0.074	123.4/105	10.6
Uniform I	-0.043 ± 0.073	0.929 ± 0.051	191.3/198	82.1
Uniform II	-0.039 ± 0.045	1.011 ± 0.034	519.5/529	60.5

Scatter consistent with random

No CPV observed with 2010 dataset

Direct CPV: ΔA_{CP}

Another test of CP violation in charm:

$$\Delta A_{CP} = A_{CP}(K^{+}K^{-}) - A_{CP}(\pi^{+}\pi)$$

= $A_{RAW}(D^{*} \to (K^{+}K^{-})_{D}\pi)$

• Experimentally, very robust. Nearly all systematics cancel (e.g. D* production)

• With 2010 dataset, 37 pb⁻¹

 $\Delta A_{CP} = (-0.28 \pm 0.70 \pm 0.25)\%$

Null result

The 600 pb⁻¹ update of this analysis is the last talk of today's session

LHCb-CONF-2011-023

$(s) - A_{RAW}(D^* \to (\pi^+\pi^-)_D\pi_s)$

- LHCb takes advantage of the unprecedented samples of heavy quark hadrons at the LHC
- There is considerable effort on CKM angle measurements, notably γ
 - Many complimentary modes in preparation
- Charm physics is providing as much excitement as the beauty program
- Most results here are on 37 pb⁻¹. Results using 1 fb⁻¹ in preparation