Search for the Higgs boson in the WW decay channel with ATLAS using 4.7 fb$^{-1}$ of data from 2011

Josh Kunkle
For the ATLAS Collaboration

Rencontres de Moriond 2012

http://cdsweb.cern.ch/record/1429660
H → WW → l^+νl^-ν

Higgs production

Higgs decay

If $M_H < 2 M_W$ one W is off shell
Why we search in $H\rightarrow WW\rightarrow l^+\nu l^-\bar{\nu}$

- Large branching fraction for wide range of masses – Large window of sensitivity

- Expected sensitivity extends to low m_H (127 GeV with 4.7 fb$^{-1}$). Competitive with $H\rightarrow\gamma\gamma$

Why is $H\rightarrow WW\rightarrow l^+\nu l^-\bar{\nu}$ difficult?

Two neutrinos in final state → no mass reconstruction. Signal is a broad excess of events

Must have confidence in background model to identify an emerging signal
How to select $H \rightarrow WW \rightarrow l^+ \nu l^- \nu$

- Opposite-sign lepton pairs – $e e \mu \mu \epsilon \mu$
- Large missing transverse momentum from neutrinos
- Use 0 and 1 jet final states + 2 jet VBF (tag forward jets)

WW Spin correlation:

Require small $\Delta \phi(l^+, l^-)$

Low m_H:

Require low $m(l^+, l^-)$

Josh Kunkle – ATLAS

H\rightarrowWW\rightarrowl$^+\nu l^-\nu

Moriond EW 4 / 8
Backgrounds to $H \rightarrow WW \rightarrow l^+v_l^-v$

Use data-driven estimates for main backgrounds

<table>
<thead>
<tr>
<th>Background</th>
<th>Methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>W + jets</td>
<td>Reject with isolation, PID
10% of Background
Extrapolate from inverted lepton PID control region</td>
</tr>
<tr>
<td>Z/γ^* + jets</td>
<td>Reject with met cut
5% of Background
Normalize MC using Z control region</td>
</tr>
<tr>
<td>Top</td>
<td>Reject with jet cuts
5% of Background
Jet veto efficiency derived in b-tag control region</td>
</tr>
<tr>
<td>WW</td>
<td>Reject with $\Delta\phi(l,l)$, $m(l,l)$ cut
65% of Background
Normalize MC using high $m(l^+,l^-)$ control region</td>
</tr>
</tbody>
</table>

Remaining backgrounds from Di-Bosons are estimated using simulation
Final distributions

After all analysis cuts

Transverse Mass (m_T) is a proxy for Higgs mass for WW channel

125 GeV Higgs signal shown

No significant excess observed

Fit m_T shape to extract limits

Josh Kunkle – ATLAS

H→WW→l⁺vl⁻ν

Moriond EW 6 / 8
Limit results

Likelihood for each M_H in 9 channels (ee, mm, em) x (0 jet, 1 jet, 2 jet)

Expected 95% C.L. Exclusion: $127 \text{ GeV} < m_H < 234 \text{ GeV}$

Observed 95% C.L. Exclusion: $130 \text{ GeV} < m_H < 260 \text{ GeV}$
H→WW→l⁺vl⁻ν is one of the most sensitive Higgs search channels

Combine WW and 11 other channels (right)

We will “close the gap” with the 2012 data

Expect discovery or exclusion this year!

See Sandra Kortner's talk for details on ATLAS Higgs combination results

Josh Kunkle – ATLAS
Signal Strength

$H \rightarrow WW \rightarrow l^+ l^- \nu \bar{\nu}$

$\Delta s = 7$ TeV

$-2 \ln \lambda(\mu) < 1$

$Ldt = 4.7 \text{ fb}^{-1}$

$m_H [\text{GeV}]$

$m_H [\text{GeV}]$
m_T distribution for 2 jet analysis

ATLAS Preliminary

\(\sqrt{s} = 7 \text{ TeV}, \int L \, dt = 4.7 \text{ fb}^{-1} \)

\(H \rightarrow WW^{(*)} \rightarrow l^+l^-\nu\bar{\nu} + \geq 2 \text{ jets} \)
Compare to 2 fb\(^{-1}\) results

Exclusion regions:

- **Expected:** 127 GeV < \(m_H\) < 234 GeV
- **Observed:** 130 GeV < \(m_H\) < 260 GeV

- **Expected:** 134 GeV < \(m_H\) < 200 GeV
- **Observed:** 145 GeV < \(m_H\) < 206 GeV
Changes since 2 fb$^{-1}$ publication

Analysis changes:

Extend analysis up to $M_H = 600$ GeV (does not affect low M_H limits)

Add VBF channel – Improves expected limit (a few GeV at low M_H and 10 GeV at high M_H)

Fit M_T shape in limit extraction – Improves limit by 10 – 20%

Analysis changes:

Improved background determination:

$W\gamma^*$ - Studies to better understand contribution

DY – Study different methods for extrapolating from Z peak

Conditions changes:

Increased Pileup
Increase trigger thresholds
Top control region

ATLAS Preliminary

\(\sqrt{s} = 7 \text{ TeV}, \int L \, dt = 4.7 \text{ fb}^{-1} \)

H→WW\(^\ast\)→l⁺l⁻νlν + 1 jet

\[m_T [\text{GeV}] \]

Events / 10 GeV

\[m_T [\text{GeV}] \]

Events / 10 GeV

ATLAS Preliminary

\(\sqrt{s} = 7 \text{ TeV}, \int L \, dt = 4.7 \text{ fb}^{-1} \)

H→WW\(^\ast\)→l⁺l⁻νlν + 2 jets

\[m_T [\text{GeV}] \]

Events / 10 GeV

\[m_T [\text{GeV}] \]

Events / 10 GeV
ATLAS Preliminary

\[\sqrt{s} = 7 \text{ TeV}, \int L \, dt = 4.7 \text{ fb}^{-1} \]

- Data
- SM (sys \oplus stat)
- WW
- $WZ/ZZ/W_\gamma$
- Single Top
- W+jets
- Z+jets
- H [125 GeV]

Events / 10 GeV

- **Left Panel:** $H \rightarrow WW^{(*)} \rightarrow l^+l^-\nu\bar{\nu}$ + 0 jets
- **Right Panel:** $H \rightarrow WW^{(*)} \rightarrow l^+l^-\nu\bar{\nu}$ + 1 jet

WW control region
Jet multiplicity

- VBF analysis in 2 jet bin to remove top background

- While the VBF channel cannot exclude the Higgs alone, it does contribute to the combined limit
Missing Energy Distributions

Missing Energy distributions for the eμ (top right), ee (bottom left), μμ (bottom right) channels. The cut removes a majority of Z+jets events.

Josh Kunkle – ATLAS

H→WW→l⁺νl⁻ν

Moriond EW 18 / 8
Other Backgrounds

WZ + ZZ – Small backgrounds. Estimate from Simulation

Single Top – Included in the Top background. Differences in b-jet kinematics shown to be negligible

Wγ* - Important at low mass. Background estimate currently from Monte Carlo. Data driven methods are being developed.
Full combined limit plot

ATLAS Preliminary

2011 Data

\[\int L dt = 4.6-4.9 \text{ fb}^{-1} \]

\[\sqrt{s} = 7 \text{ TeV} \]

95% CL Limit on \(\sigma/\sigma_{SM} \)

LEP exclusion

ATLAS exclusion

\(m_H \) [GeV]

\(CL_s \) Limits

Obs.

Exp.

\(\pm 1 \sigma \)

\(\pm 2 \sigma \)