Time Integrated Analysis of $B^0_s \to \phi \phi$ at LHCb

Dean Lambert on behalf of the LHCb Collaboration

Rencontres de Moriond 2012

Angular AnalysisTriple Product Asymmetries

LHCb Detector

Motivation

- The decay $B_s^0 \rightarrow \phi \phi$ proceeds via a Flavour Changing Neutral Current (FCNC) process.
- FCNCs or B flavour mixing allow possible new physics contributions in loop diagrams.
- CP violating phase $\Phi_s^{\phi\phi}$ accessible, larger dataset needed.
- Using smaller dataset can measure *T*-violating "triple products", which do not rely on flavour tagging/time.

Data Sample

Analysis presented uses entire dataset collected by LHCb during 2011, 1.0fb⁻¹. Reconstruct as $B_s^0 \to \phi(\to K^+K^-)\phi(\to K^+K^-)$.

Figure: B_s^0 mass distribution after full offline selection. Fits to a double Gaussian signal(red) and exponential background(blue dotted) are superimposed.

 801 ± 29 events observed. LHCb-Paper-2012-04

Angular Analysis

- P→VV decay, spin 0 B meson decays to two particles of spin 1.
- Therefore there are 3 possible spin configurations allowed by conservation of orbital angular momentum.
- These correspond to 3 linear polarisation amplitudes, $|A_0|, |A_{\perp}|, |A_{\parallel}|$.

- Due to V-A nature of the weak interaction, $f_L \gg f_T$.
- Experimentally confirmed by the B-factories in tree dominated processes e.g. $B_d^0 \rightarrow \rho^+ \rho^-$.
- However in decays such as $B_d^0 \to \phi K^*(892)$ it was found $f_L \approx f_T$.
- This is sometimes known as the "polarisation puzzle."

$$f_L = \frac{|A_0|^2}{|A_0|^2 + |A_\perp|^2 + |A_\parallel|^2}, f_T = \frac{|A_\perp|^2 + |A_\parallel|^2}{|A_0|^2 + |A_\perp|^2 + |A_\parallel|^2}.$$

Angular Analysis Results

Figure: Angular distributions(points) and fit projections for signal(red) and background(blue).

The polarisation amplitudes and strong phase are measured, using the constraint $|A_{\|}|^2=1-|A_0|^2-|A_{\perp}|^2.$

$ A_0 ^2$	=	0.365	\pm 0.022 (stat) \pm 0.012	(syst)
$ A_{\perp} ^2$	=	0.291	\pm 0.024 (stat) \pm 0.010	(syst)
$ A_{ } ^2$	=	0.344	\pm 0.024 (stat) \pm 0.014	(syst)
$\cos(\delta_{\parallel}-\delta_{0})$	=	-0.844	$\pm0.068(\text{stat})\pm0.029$. (syst)

Angular Analysis Comparison

[1] http://www-cdf.fnal.gov/physics/new/bottom/110331.blessed-BsphiphiCPV/

Triple Product Asymmetries

- Scalar triple products of three momentum (e.g. $sin\psi = \vec{p_1} \cdot \vec{p_2} \times \vec{p_3}$) or spin vectors are odd under time reversal.
- **Non-zero** triple product asymmetries can either be due to a *T*-violating phase or a *T*-conserving phase and final-state interactions.
- The former case implies, assuming \mathcal{CPT} conservation, that \mathcal{CP} is violated.

We define our triple products as:

$$U = \sin (2\Phi)$$

$$V = \sin (\pm \Phi)$$

$$A_u \equiv \frac{\Gamma(U > 0) - \Gamma(U < 0)}{\Gamma(U > 0) + \Gamma(U < 0)}.$$

$$A_v \equiv \frac{\Gamma(V > 0) - \Gamma(V < 0)}{\Gamma(V > 0) + \Gamma(V < 0)}.$$

Where positive sign in sin $(\pm \Phi)$ is taken if $\cos \theta_1 \cos \theta_2 \ge 0$.

[2] M. Gronau, J. Rosner. "TRIPLE PRODUCT ASYMMETRIES IN K,D(s) AND B(s) DECAYS."

Triple Product Results

Figure: U & V distributions for data(black) and background(red).

The triple product asymmetries in this mode are measured to be:

$$A_U = -0.055 \pm 0.036 \,(\text{stat}) \pm 0.018 \,(\text{syst})$$

 $A_V = 0.010 \pm 0.036 \,(\text{stat}) \pm 0.018 \,(\text{syst})$

Systematic Uncertainties

Systematics uncertainties are considered from several sources.

e	$ A_0 ^2$	$ A_{\perp} ^2$	$ A_{\parallel} ^2$	$\cos \delta_{\parallel}$
S-wave		0.005	0.012	0.001
acceptance	0.006	0.006	0.002	0.007
ar acceptance	0.007	0.006	0.006	0.028
r category	0.003	0.002	0.001	0.004
round model	0.001	-	0.001	0.003
	0.012	0.010	0.014	0.029
	e acceptance ar acceptance r category round model	$\begin{array}{c c} e & A_0 ^2 \\ e & 0.007 \\ acceptance & 0.006 \\ ar \ acceptance & 0.007 \\ r \ category & 0.003 \\ round \ model & 0.001 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Angular Analysis:

Triple Product Analysis:

Source	A_U	A_V	Chosen uncertainty
Angular acceptance	0.009	0.006	0.009
Time acceptance	0.006	0.014	0.014
Fit model	0.004	0.005	0.005
Total			0.018

Conclusion

- Polarisation amplitudes, triple products and a strong phase have been measured, using a time integrated method, in $B_s^0 \rightarrow \phi \phi$.
- These are currently the most precise measurements of these parameters for this decay.
- Results are consistent with earlier measurements by LHCb[3] and CDF[4].
- Triple product asymmetries are consistent with no *T*-violation, hence no *CP*-violation from *CPT*.
- Paper soon to be submitted to Phys. Lett. B.

[3] Study of Triple Product Asymmetries in $B_{\rm s} \rightarrow \phi \phi$ decays. LHCb-CONF-2011-052.

[4] Measurement of Polarization and Search for CP-Violation in $B_s^0 o \phi \phi$ Decays. FERMILAB-PUB-11-345-E

END.

The angular functions in the helicity basis are given

$$\begin{aligned} f_1(\theta_1, \theta_2, \Phi) &= 4\cos^2\theta_1 \cos^2\theta_2 \\ f_2(\theta_1, \theta_2, \Phi) &= \sin^2\theta_1 \sin^2\theta_2 (1 + \cos 2\Phi) \\ f_3(\theta_1, \theta_2, \Phi) &= \sin^2\theta_1 \sin^2\theta_2 (1 - \cos 2\Phi) \\ f_4(\theta_1, \theta_2, \Phi) &= -2\sin^2\theta_1 \sin^2\theta_2 \sin 2\Phi \\ f_5(\theta_1, \theta_2, \Phi) &= \sqrt{2}\sin 2\theta_1 \sin 2\theta_2 \cos \Phi \\ f_6(\theta_1, \theta_2, \Phi) &= -\sqrt{2}\sin 2\theta_1 \sin 2\theta_2 \sin \Phi. \end{aligned}$$

The time dependent functions are

$$\begin{split} &K_{1}(t) = \frac{1}{2}A_{0}^{2}[(1+\cos\phi_{s})e^{-\Gamma_{L}t} + (1-\cos\phi_{s})e^{-\Gamma_{H}t} \pm 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}] \\ &K_{2}(t) = \frac{1}{2}A_{\parallel}^{2}[(1+\cos\phi_{s})e^{-\Gamma_{L}t} + (1-\cos\phi_{s})e^{-\Gamma_{H}t} \pm 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}] \\ &K_{3}(t) = \frac{1}{2}A_{\perp}^{2}[(1-\cos\phi_{s})e^{-\Gamma_{L}t} + (1+\cos\phi_{s})e^{-\Gamma_{H}t} \mp 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}] \\ &K_{4}(t) = |A_{\parallel}||A_{\perp}|[\pm e^{-\Gamma_{s}t}\{\sin\delta_{1}\cos(\Delta m_{s}t) - \cos\delta_{1}\sin(\Delta m_{s}t)\cos\phi_{s}\} \\ &-\frac{1}{2}(e^{-\Gamma_{H}t} - e^{-\Gamma_{L}t})\cos\delta_{1}\sin\phi_{s}] \\ &K_{5}(t) = \frac{1}{2}|A_{0}||A_{\parallel}|\cos(\delta_{2} - \delta_{1}) \\ &[(1+\cos\phi_{s})e^{-\Gamma_{L}t} + (1-\cos\phi_{s})e^{-\Gamma_{H}t} \pm 2e^{-\Gamma_{s}t}\sin(\Delta m_{s}t)\sin\phi_{s}] \\ &K_{6}(t) = |A_{0}||A_{\perp}|[\pm e^{-\Gamma_{s}t}\{\sin\delta_{2}\cos(\Delta m_{s}t) - \cos\delta_{2}\sin(\Delta m_{s}t)\cos\phi_{s}\} \\ &-\frac{1}{2}(e^{-\Gamma_{H}t} - e^{-\Gamma_{L}t})\cos\delta_{2}\sin\phi_{s}] \end{split}$$

Angular Analysis

In order to disentangle different \mathcal{CP} states an angular analysis is needed. The time dependent differential cross section is given

$$rac{d^4\Gamma}{d\cos heta_1d\cos heta_2d\Phi dt}\propto \sum_{n=1}^6 K_n(t)f_n(heta_1, heta_2,\Phi),$$

 K_n are parts describing time evolution and f_n are angular distributions. Integrating over all time, assuming $\phi_s = 0$ and equal numbers of B_s and \overline{B}_s at production.

 $\frac{d^3\Gamma}{d\cos\theta_1 d\cos\theta_2 d\Phi} \propto |A_0|^2 f_1 + |A_{\parallel}|^2 f_2 + |A_{\perp}|^2 f_3 + |A_0||A_{\parallel}| f_5 \cos(\delta_{\parallel}).$

Triple Product Asymmetries

• TPA given
$$A_{TP}^{\parallel,0} \propto rac{\Im(A_\perp A_{\parallel,0}^*)}{\Sigma |A_\lambda|^2}.$$

 Without carrying out an angular fit we can calculate TP from U and V distributions.

$$\begin{split} &U = \sin \left(2\Phi \right) \\ &V = \sin \left(\pm\Phi \right) \\ &A_u \equiv \frac{\Gamma(\sin 2\Phi > 0) - \Gamma(\sin 2\Phi < 0)}{\Gamma(\sin 2\Phi > 0) + \Gamma(\sin 2\Phi < 0)}. \\ &A_v \equiv \frac{\Gamma(\sin(\pm\Phi) > 0) - \Gamma(\sin(\pm\Phi) < 0)}{\Gamma(\sin(\pm\Phi) > 0) + \Gamma(\sin(\pm\Phi) < 0)}. \end{split}$$

Where positive sign in sin $(\pm \Phi)$ is taken if $\cos \theta_1 \cos \theta_2 \ge 0$.

Figure: ϕ mass distribution for the $B_s^0 \rightarrow \phi \phi$ data without a ϕ mass cut applied. The background has been removed using the sPlot technique. There are two entries per B_s^0 candidate. The red curve shows a relativistic Relativistic Breit-Wigner. The S-wave component is shown by the dotted line.

Cut	Value
Track χ^2/ndf	< 5
Track <i>p</i> _	$> 500 \ MeV/c$
Track IP χ^2	> 21
$\Delta ln \mathcal{L}_{K\pi}$	> 0
$ M_{\phi}-M_{\phi}^{PDG} $	$<~12~{\it MeV}/c^2$
$p_T^{\phi 1}, p_T^{\phi 2}$	> 900 MeV/c
$p_T^{\phi 1} imes p_T^{\phi 2}$	$> 2 \ { m GeV^2/c^2}$
ϕ vertex χ^2/ndf	< 24
B_s^0 vertex χ^2/ndf	< 7.5
B_s^0 FD χ^2	> 270
B_s^{0} IP χ^2	< 15

Selection criteria for $B_s^0 \to \phi \phi$. The abbreviations IP and FD stand for Impact Parameter and Flight Distance respectively. $P_T^{\phi 1}$ and $P_T^{\phi 2}$ refer to the transverse momentum of the two ϕ candidates.