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Standard Model

Electroweak symmetry breaking sector? Needed
three Goldstone bosons → WL, ZL

custodial SU(2)C → ρ =
M2

W
M2

Z cos2 θW
≈ 1

unitarization of WW scattering amplitudes
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Standard Model scalar sector

EW symmetry breaking sector ⊃ scalar doublet H =

(
H+

H0

)

global symmetries

G = SU(2)L × SU(2)R → H = SU(2)C

φ → gLφg†R

φ =

(
H0 H+

−H− H0

)
= ei π

aTa
v

(
v + h 0

0 v + h

)

LSB =
1
2

tr
[
Dµφ

†Dµφ
]
− 1

2
λ

(
1
2

Tr [φ†φ]− v2
)2

Anna Kamińska Strong electroweak symmetry breaking



Standard Model scalar sector

EW symmetry breaking sector ⊃ scalar doublet H =

(
H+

H0

)
global symmetries

G = SU(2)L × SU(2)R → H = SU(2)C

φ → gLφg†R

φ =

(
H0 H+

−H− H0

)
= ei π

aTa
v

(
v + h 0

0 v + h

)

LSB =
1
2

tr
[
Dµφ

†Dµφ
]
− 1

2
λ

(
1
2

Tr [φ†φ]− v2
)2
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WW scattering and perturbative unitarity

scattering amplitudes for longitudinally polarized W and Z
(using the Goldstone boson equivalence theorem)

with the Scalar exchange

M(s, t ,u) =
s
v2 −

s
v2

s
s −m2

h

in the SM without the Scalar exchange

M(s, t ,u) =
s
v2

perturbative unitarity lost ∼ 1.5TeV
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Strong electroweak symmetry breaking

EW breaking by new strong interactions

Motivation: strong dynamics is realized in Nature

Can we provide an effective low-energy perturbative
description?

CHPT
(QCD: approximate SU(2)L × SU(2)R → SU(2)V ↔ pions)

What is the nature of the Goldstone bosons which provide
W±

L , ZL?

πa are composite fields
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Strong electroweak symmetry breaking

How is perturbative unitarity restored?

resonances

spin-1 resonances
Motivation: QCD
→ vector meson
dominance
technicolor, deconstruction

scalar resonance
PG composite scalar

spin-1 resonances - distinctive feature of strong electroweak
symmetry breaking models
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Strong electroweak symmetry breaking

spin-1 resonances
A.Falkowski, C.Grojean, AK, S.Pokorski, A.Weiler

JHEP 1111 (2011) 028, arXiv:1108.1183

Assume:
lightest set of resonances - of spin-1 resonances, vector
meson dominance
approximate SU(2)C custodial symmetry

Goal: concentrate on the vector boson sector
Goal: provide a simple, general and self-consistent effective
framework to study electroweak symmetry breaking by strong
dynamics

→ perfect laboratory for studying spin-1 resonances

Anna Kamińska Strong electroweak symmetry breaking



Strong electroweak symmetry breaking

spin-1 resonances
A.Falkowski, C.Grojean, AK, S.Pokorski, A.Weiler

JHEP 1111 (2011) 028, arXiv:1108.1183

Assume:
lightest set of resonances - of spin-1 resonances, vector
meson dominance
approximate SU(2)C custodial symmetry

Goal: concentrate on the vector boson sector
Goal: provide a simple, general and self-consistent effective
framework to study electroweak symmetry breaking by strong
dynamics

→ perfect laboratory for studying spin-1 resonances
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Introducing spin-1 resonances

U
SU(2)L×SU(2)R−→ gLUg†R, U = eiσ·π(x)/v

L(2)CHPT =
v2

4
Tr
{

DµU†DµU
}
, DµU = ∂µU−i

g′

2
Bµσ3U+i

g
2

UσaW a
µ

spin-1 resonances ↔ gauge bosons of a ”hidden” local
symmetry SU(2)h

U = ξLξ
†
R, ξL,R → gL,RξL,Rh†

DµξL = ∂µξL − i
g
2

W a
µσ

aξL + i
gρ
2
ξLρ

a
µσ

a

DµξR = ∂µξR − i
g′

2
Bµσ3ξR + i

gρ
2
ξRρ

a
µσ

a

”hidden” gauge coupling gρ � g,g′

Goldstone bosons

ξL = e iπaσa/2, ξR = e−iπaσa/2
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Building the effective Lagrangian

building blocks

objects transforming as adjoints of SU(2)h with well defined
R ↔ L parity

V±µ = −i
(
ξ†LDµξL ± ξ†RDµξR

)

most general (parity preserving) Lagrangian
at the leading order in the derivative expansion

L ⊃ −v2

4
Tr
{
αV+

µ V+
µ + V−µ V−µ

}
+ Lkinetic

technicolor ↔ α ≈ 2
deconstruction ↔ α = 1
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Strong electroweak symmetry breaking

Study perturbative unitarity and check:
up to which energy is this minimal setup self-consistent?
what is the allowed resonance mass and its couplings?

Collider phenomenology of such a minimal setup?

Anna Kamińska Strong electroweak symmetry breaking



Strong electroweak symmetry breaking

Study perturbative unitarity and check:
up to which energy is this minimal setup self-consistent?
what is the allowed resonance mass and its couplings?

Collider phenomenology of such a minimal setup?
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Perturbative unitarity region
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Maximal cutoff
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2mρ

ππ → ππ

πρ → πρ

ππ → ρρ

the upper bound on the
resonance mass ∼3 TeV
light resonances not so
efficient in unitarizing
a crucial role played by
ππ → ρρ
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Phenomenology

Find couplings of resonances to matter fields
→ assume that the SM quarks and leptons are fundamental,

couplings to resonances only via mixing of the latter with the
SM gauge bosons

W±
µ → W±

µ −
g

2gρ
ρ±µ

Zµ → Zµ −
g2 − g′2

2gρ
√

g2 + g′2
ρ0
µ

Aµ → Aµ −
e

2gρ
ρ0
µ

(1)

Anna Kamińska Strong electroweak symmetry breaking



Phenomenology

Decays

Br(ρ± → e±ν) ≈ 2Br(ρ0 → e+e−) ≈ 16m4
W

m4
ρ

which is strongly suppressed in the interesting parameter
space (for mρ � 2mW )

Γ(ρ0 →W+W−) ≈ Γ(ρ± → ZW±) ≈ mρg2
ρππ

48π =
m5

ρ

192πg2
ρv4

Production
Drell-Yan (qq̄ → ρ)  pp → ρ

Vector boson fusion (VV → ρ)  pp → ρjj
ρ−strahlung (V → ρV )  pp → ρV
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Collider phenomenology

Cross section for the production of a single neutral (solid) and
charged (dashed) resonance at the LHC
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Direct searches

2 4 6 8 10 12

2

4

6

8

10

12

gΡ

g Ρ
ΠΠ

Σ�pp � Ρ X� �pb� at LHC7
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Contours of the total cross section for the inclusive production of ρ0, ρ± (solid, dashed)
at the LHC; (purple) - CMS search for WZ resonant production exclusions.

if the resonances are heavy and strongly coupled they
might escape any direct detection at the the LHC
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Strong electroweak symmetry breaking
scalar resonance

- PG composite scalar

SO(5)/SO(4) → 4π → H
Agashe, Contino, Pomarol ’04

SO(6)/SO(5) → 5π → H,a
SU(4)/Sp(4,C) → 5π → H, s

Gripaios, Pomarol, Riva, Serra ’09
Chacko, Batra ’08

SO(6)/SO(4)xSO(2) → 8π → H1 + H2

Mrazek, Pomarol, Rattazzi, Serra, Wulzer ’11

L ⊃ v2

4

(
1 + 2a

h
v

+ b
h2

v2 + ...

)
Tr
(

DµU†DµU
)
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Conclusions

we have studied the physics of spin-1 resonances
connected with strong EW symmetry breaking in a simple,
general effective framework built using tools known from
QCD (CHPT, ”hidden gauge”)
considering perturbative unitarity in a simple, general
setup with spin-1 resonances constrains the allowed
resonance mass and couplings
a crucial role is played by inelastic scattering effects - a
heavy ρ meson (2.5-3) TeV is more efficient in prolonging
perturbative unitarity than a light resonance (∼2 TeV)
if the resonances are heavy (mρ ≥ 2TeV ) and strongly
coupled they might escape any direct detection at the LHC
it is interesting to use such effective frameworks to study
strong EW symmetry breaking with a light composite
scalar resonance
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