Anna Kamińska

A.Falkowski, C.Grojean, AK, S.Pokorski, A.Weiler JHEP 1111 (2011) 028, arXiv:1108.1183

Institute of Theoretical Physics

This research project has been supported by a Marie Curie Early Initial Training Network Fellowship of the European Community's Seventh Framework Programme under contract number (PITN-GA-2008-237920-UNILHC)

Electroweak symmetry breaking sector?

Electroweak symmetry breaking sector? Needed

ullet three Goldstone bosons $\ \ \to \ \ W_L, \ Z_L$

Electroweak symmetry breaking sector? Needed

- three Goldstone bosons $\rightarrow W_L, Z_L$
- custodial $SU(2)_C \rightarrow \rho = \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} \approx 1$

Electroweak symmetry breaking sector? Needed

- three Goldstone bosons $\rightarrow W_L, Z_L$
- custodial $SU(2)_C \rightarrow \rho = \frac{M_W^2}{M_Z^2 \cos^2 \theta_W} \approx 1$
- unitarization of WW scattering amplitudes

Standard Model scalar sector

EW symmetry breaking sector
$$\supset$$
 scalar doublet $H=\left(egin{array}{c} H^+ \\ H^0 \end{array}
ight)$

Standard Model scalar sector

EW symmetry breaking sector \supset scalar doublet $H=\left(\begin{array}{c} H^+\\ H^0 \end{array}\right)$ global symmetries

$$\mathcal{G} = SU(2)_L \times SU(2)_R \quad \rightarrow \quad \mathcal{H} = SU(2)_C$$

Standard Model scalar sector

EW symmetry breaking sector \supset scalar doublet $H = \begin{pmatrix} H^+ \\ H^0 \end{pmatrix}$ global symmetries

$$\mathcal{G} = SU(2)_L imes SU(2)_R o \mathcal{H} = SU(2)_C$$
 $\phi o \mathcal{G}_L \phi \mathcal{G}_R^\dagger$ $\phi = \left(egin{array}{c} H^0 & H^+ \ -H^- & H^0 \end{array}
ight) = e^{irac{\pi^a au^a}{v}} \left(egin{array}{c} v+h & 0 \ 0 & v+h \end{array}
ight)$ $\mathcal{L}_{SB} = rac{1}{2} tr \left[D_\mu \phi^\dagger D_\mu \phi
ight] - rac{1}{2} \lambda \left(rac{1}{2} au r [\phi^\dagger \phi] - v^2
ight)^2$

WW scattering and perturbative unitarity

scattering amplitudes for longitudinally polarized W and Z (using the Goldstone boson equivalence theorem)

with the Scalar exchange

$$M(s,t,u) = \frac{s}{v^2} - \frac{s}{v^2} \frac{s}{s - m_h^2}$$

in the SM without the Scalar exchange

$$M(s,t,u)=\frac{s}{v^2}$$

perturbative unitarity lost $\sim 1.5 \, TeV$

EW breaking by new strong interactions

Motivation: strong dynamics is realized in Nature

EW breaking by new strong interactions

Motivation: strong dynamics is realized in Nature

Can we provide an effective low-energy perturbative description?

CHPT

(QCD: approximate $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V \leftrightarrow \text{pions}$)

What is the nature of the Goldstone bosons which provide W_L^{\pm} , Z_L ?

π^a are composite fields

How is perturbative unitarity restored?

How is perturbative unitarity restored?

resonances

How is perturbative unitarity restored?

resonances

spin-1 resonances

- Motivation: QCD
 - \rightarrow vector meson dominance

How is perturbative unitarity restored?

resonances

spin-1 resonances

- Motivation: QCD
 - → vector meson dominance
- technicolor, deconstruction

How is perturbative unitarity restored?

resonances

spin-1 resonances

- Motivation: QCD
 - → vector meson dominance
- technicolor, deconstruction

scalar resonance

PG composite scalar

How is perturbative unitarity restored?

resonances

spin-1 resonances

- Motivation: QCD
 - → vector meson dominance
- technicolor, deconstruction

scalar resonance

PG composite scalar

spin-1 resonances - distinctive feature of strong electroweak symmetry breaking models

spin-1 resonances

A.Falkowski, C.Grojean, AK, S.Pokorski, A.Weiler JHEP 1111 (2011) 028, arXiv:1108.1183

spin-1 resonances

A.Falkowski, C.Grojean, AK, S.Pokorski, A.Weiler JHEP 1111 (2011) 028, arXiv:1108.1183

Assume:

- lightest set of resonances of spin-1 resonances, vector meson dominance
- approximate SU(2)_C custodial symmetry

spin-1 resonances

A.Falkowski, C.Grojean, AK, S.Pokorski, A.Weiler JHEP 1111 (2011) 028, arXiv:1108.1183

Assume:

- lightest set of resonances of spin-1 resonances, vector meson dominance
- approximate SU(2)_C custodial symmetry

Goal: concentrate on the vector boson sector

Goal: provide a simple, general and self-consistent effective framework to study electroweak symmetry breaking by strong dynamics

spin-1 resonances

A.Falkowski, C.Grojean, AK, S.Pokorski, A.Weiler JHEP 1111 (2011) 028, arXiv:1108.1183

Assume:

- lightest set of resonances of spin-1 resonances, vector meson dominance
- approximate SU(2)_C custodial symmetry

Goal: concentrate on the vector boson sector **Goal:** provide a simple, general and self-consistent effective framework to study electroweak symmetry breaking by strong dynamics

→ perfect laboratory for studying spin-1 resonances

Introducing spin-1 resonances

$$\begin{array}{ccc} U & \stackrel{SU(2)_L \times SU(2)_R}{\longrightarrow} & g_L U g_R^\dagger, & U = e^{i\sigma \cdot \pi(x)/v} \\ \\ \mathcal{L}_{CHPT}^{(2)} = \frac{v^2}{4} \mathrm{Tr} \left\{ D_\mu U^\dagger D^\mu U \right\}, & D_\mu U = \partial_\mu U - i \frac{g'}{2} B_\mu \sigma^3 U + i \frac{g}{2} U \sigma^a W_\mu^a \end{array}$$

Introducing spin-1 resonances

$$U \overset{SU(2)_L \times SU(2)_R}{\longrightarrow} g_L U g_R^\dagger, \qquad U = e^{i\sigma \cdot \pi(x)/V}$$

$$\mathcal{L}_{CHPT}^{(2)} = \frac{v^2}{4} \mathrm{Tr} \left\{ D_\mu U^\dagger D^\mu U \right\}, \quad D_\mu U = \partial_\mu U - i \frac{g'}{2} B_\mu \sigma^3 U + i \frac{g}{2} U \sigma^a W_\mu^a$$
 spin-1 resonances \leftrightarrow gauge bosons of a "hidden" local symmetry $SU(2)_h$

$$egin{align} U &= \xi_L \xi_R^\dagger, & \xi_{L,R}
ightarrow g_{L,R} \xi_{L,R} h^\dagger \ D_\mu \xi_L &= \partial_\mu \xi_L - i rac{g}{2} W_\mu^a \sigma^a \xi_L + i rac{g_
ho}{2} \xi_L
ho_\mu^a \sigma^a \ D_\mu \xi_R &= \partial_\mu \xi_R - i rac{g'}{2} B_\mu \sigma^3 \xi_R + i rac{g_
ho}{2} \xi_R
ho_\mu^a \sigma^a \ \end{array}$$

"hidden" gauge coupling $g_
ho\gg g,g'$

Introducing spin-1 resonances

$$U \overset{SU(2)_L \times SU(2)_R}{\longrightarrow} g_L U g_R^\dagger, \qquad U = e^{i\sigma \cdot \pi(x)/v}$$

$$\mathcal{L}_{CHPT}^{(2)} = \frac{v^2}{4} \mathrm{Tr} \left\{ D_\mu U^\dagger D^\mu U \right\}, \quad D_\mu U = \partial_\mu U - i \frac{g'}{2} B_\mu \sigma^3 U + i \frac{g}{2} U \sigma^a W_\mu^a$$
 spin-1 resonances \leftrightarrow gauge bosons of a "hidden" local symmetry $SU(2)_h$

$$egin{align} U &= \xi_L \xi_R^\dagger, & \xi_{L,R}
ightarrow g_{L,R} \xi_{L,R} h^\dagger \ D_\mu \xi_L &= \partial_\mu \xi_L - i rac{g}{2} W_\mu^a \sigma^a \xi_L + i rac{g_
ho}{2} \xi_L
ho_\mu^a \sigma^a \ D_\mu \xi_R &= \partial_\mu \xi_R - i rac{g'}{2} B_\mu \sigma^3 \xi_R + i rac{g_
ho}{2} \xi_R
ho_\mu^a \sigma^a \ \end{array}$$

"hidden" gauge coupling $g_
ho\gg g,g'$

Goldstone bosons

$$\xi_L = e^{-i\pi^a\sigma^a/2}, \quad \xi_R = e^{-i\pi^a\sigma^a/2}$$

Building the effective Lagrangian

building blocks

objects transforming as adjoints of $SU(2)_h$ with well defined $R \leftrightarrow L$ parity

$$V_{\mu}^{\pm} = -i \left(\xi_{L}^{\dagger} D_{\mu} \xi_{L} \pm \xi_{R}^{\dagger} D_{\mu} \xi_{R} \right)$$

Building the effective Lagrangian

building blocks

objects transforming as adjoints of $SU(2)_h$ with well defined $R \leftrightarrow L$ parity

$$V_{\mu}^{\pm} = -i \left(\xi_L^{\dagger} D_{\mu} \xi_L \pm \xi_R^{\dagger} D_{\mu} \xi_R \right)$$

most general (parity preserving) Lagrangian at the leading order in the derivative expansion

$$\mathcal{L} \supset -rac{ extstyle v^2}{4} \mathrm{Tr} \left\{ lpha extstyle V_\mu^+ extstyle V_\mu^- extstyle V_\mu^-
ight\} + \mathcal{L}_{ extstyle kinetic}$$

Building the effective Lagrangian

building blocks

objects transforming as adjoints of $SU(2)_h$ with well defined $R \leftrightarrow L$ parity

$$V_{\mu}^{\pm} = -i \left(\xi_L^{\dagger} D_{\mu} \xi_L \pm \xi_R^{\dagger} D_{\mu} \xi_R \right)$$

most general (parity preserving) Lagrangian at the leading order in the derivative expansion

$$\mathcal{L} \supset -rac{ extstyle v^2}{4} \mathrm{Tr} \left\{ lpha extstyle V_\mu^+ extstyle V_\mu^- extstyle V_\mu^-
ight\} + \mathcal{L}_{ extstyle kinetic}$$

technicolor
$$\leftrightarrow \alpha \approx$$
 2 deconstruction $\leftrightarrow \alpha =$ 1

Study perturbative unitarity and check:

- up to which energy is this minimal setup self-consistent?
- what is the allowed resonance mass and its couplings?

Study perturbative unitarity and check:

- up to which energy is this minimal setup self-consistent?
- what is the allowed resonance mass and its couplings?

Collider phenomenology of such a minimal setup?

Perturbative unitarity region

$$g_{
ho\pi\pi}=rac{lpha}{2}g_{
ho},~~m_{
ho}^2=2g_{
ho\pi\pi}g_{
ho}v^2$$

Maximal cutoff

Maximal cutoff

- the upper bound on the resonance mass ~3 TeV
- light resonances not so efficient in unitarizing
- a crucial role played by $\pi\pi \to \rho\rho$

Find couplings of resonances to matter fields

→ assume that the SM quarks and leptons are fundamental, couplings to resonances only via mixing of the latter with the SM gauge bosons

(1)

Decays

• ${\rm Br}(\rho^\pm \to e^\pm
u) \approx 2 {\rm Br}(\rho^0 \to e^+ e^-) \approx \frac{16 m_W^4}{m_\rho^4}$ which is strongly suppressed in the interesting parameter space (for $m_\rho \gg 2 m_W$)

Decays

- ${
 m Br}(
 ho^\pm o e^\pm
 u) pprox 2 {
 m Br}(
 ho^0 o e^+ e^-) pprox {16 m_W^4 \over m_
 ho^4}$ which is strongly suppressed in the interesting parameter space (for $m_
 ho \gg 2 m_W$)
- ullet $\Gamma(
 ho^0 o W^+W^-)pprox \Gamma(
 ho^\pm o ZW^\pm)pprox rac{m_
 ho g_{
 ho\pi\pi}^2}{48\pi}=rac{m_
 ho^2}{192\pi g_
 ho^2v^4}$

Decays

- ${
 m Br}(
 ho^\pm o e^\pm
 u) pprox 2 {
 m Br}(
 ho^0 o e^+ e^-) pprox {16 m_W^4 \over m_
 ho^4}$ which is strongly suppressed in the interesting parameter space (for $m_
 ho \gg 2 m_W$)
- ullet $\Gamma(
 ho^0 o W^+W^-)pprox \Gamma(
 ho^\pm o ZW^\pm)pprox rac{m_
 ho g_{
 ho\pi\pi}^2}{48\pi}=rac{m_
 ho^5}{192\pi g_
 ho^2v^4}$

Production

- Drell-Yan $(q\bar{q} \rightarrow \rho) \rightsquigarrow pp \rightarrow \rho$
- Vector boson fusion ($VV \rightarrow \rho$) $\leadsto pp \rightarrow \rho jj$
- ρ -strahlung ($V \rightarrow \rho V$) $\rightsquigarrow pp \rightarrow \rho V$

Collider phenomenology

Cross section for the production of a single neutral (solid) and charged (dashed) resonance at the LHC

Direct searches

Contours of the total cross section for the inclusive production of ρ^0 , ρ^\pm (solid, dashed) at the LHC; (purple) - CMS search for WZ resonant production exclusions.

Direct searches

Contours of the total cross section for the inclusive production of ρ^0 , ρ^\pm (solid, dashed) at the LHC; (purple) - CMS search for WZ resonant production exclusions.

 if the resonances are heavy and strongly coupled they might escape any direct detection at the the LHC

scalar resonance

- PG composite scalar

scalar resonance

- PG composite scalar

$$\bullet$$
 $SO(5)/SO(4) \rightarrow 4\pi \rightarrow H$

Agashe, Contino, Pomarol '04

•
$$SO(6)/SO(5) \rightarrow 5\pi \rightarrow H, a$$

 $SU(4)/Sp(4, C) \rightarrow 5\pi \rightarrow H, s$

Gripaios, Pomarol, Riva, Serra '09 Chacko, Batra '08

•
$$SO(6)/SO(4)xSO(2) \rightarrow 8\pi \rightarrow H_1 + H_2$$

Mrazek, Pomarol, Rattazzi, Serra, Wulzer '11

$$\mathcal{L} \supset \frac{\textit{v}^2}{4} \left(1 + 2 a \frac{\textit{h}}{\textit{v}} + \textit{b} \frac{\textit{h}^2}{\textit{v}^2} + ... \right) \text{Tr} \left(\textit{D}_{\mu} \textit{U}^{\dagger} \textit{D}^{\mu} \textit{U} \right)$$

Conclusions

- we have studied the physics of spin-1 resonances connected with strong EW symmetry breaking in a simple, general effective framework built using tools known from QCD (CHPT, "hidden gauge")
- considering perturbative unitarity in a simple, general setup with spin-1 resonances constrains the allowed resonance mass and couplings
- a crucial role is played by inelastic scattering effects a heavy ρ meson (2.5-3) TeV is more efficient in prolonging perturbative unitarity than a light resonance (\sim 2 TeV)
- if the resonances are heavy $(m_{\rho} \ge 2 \, TeV)$ and strongly coupled they might escape any direct detection at the LHC
- it is interesting to use such effective frameworks to study strong EW symmetry breaking with a light composite scalar resonance

