How to tell apart non-standard EWSB mechanisms

Veronica Sanz CERN and YORK Moriond 2012

What is standard? EWSB by elementary scalar(s)

includes SM and SUSY

What is non-standard?

EWSB by -composite scalar - no scalar at all

includes Little Higgs, Extra-Dimensions and Technicolor

Composite Scalar - MotivationWhat if there is a Higgs?Light scalar

since SUSY may not be there to save the day

> Higgs as a PGB like the pion of QCD composite Higgs

Need stabilization mechanism (or we have no clue about QFT)

> Symmetries Fermionic SUSY Bosonic Goldstone

Composite Scalar - Realizations

Composite Higgs is realized in Little Higgs, Extra-Dimensions and Technicolor

symmetry PGB -Little Higgs, TC: new 4D symmetry -Extra-dimensions: SM 5D gauge= 4D gauge+GB

Composite Scalar-Generic features

scalar resonance WW unitarization non-SM scalar: deviations

0

 $4\pi f$

2)

$$\xi = \frac{v^2}{f^2}$$
 degree of fine-tuning Giudice, Grojean, Pomarol and Rattazzi '07

Theory study 300 ifb @ 14 TeV for $\xi > 0.2$

composite Higgs already unitarize WW $\xi \rightarrow 0$ SM-like

generic features are too SM-like

Composite Scalar-Common features

ex. Z', ρ_{TC} , Z_{KK}

s=1

not crucial for WW scattering

-				
i and		and a second		and the second second second

Composite Scalar-Common features

Composite Scalar-Common features

ex. Z', ρ_{TC} , Z_{KK} s=1 not crucial for WW scattering new gauge symms? ex. G_{KK} , f_2^{TC} s=2 Extra-Dimensions and TC-type see next

Composite Scalar-Common features ex. Z', ρ_{TC} , Z_{KK} s=1 not crucial for WW scattering new gauge symms? ex. G_{KK} , f_2^{TC} s=2 Extra-Dimensions and TC-type see nex ex. T, Q_{KK} , techni-baryons s=1 New heavy quarks mix with SM quarks

Composite Scalar-Common features ex. Z', ρ_{TC} , Z_{KK} s=1 not crucial for WW scattering new gauge symms? ex. G_{KK} , f_2^{TC} s=2 Extra-Dimensions and TC-type see next ex. T, Q_{KK} , techni-baryons s=1 3rd gen New heavy quarks mix with SM quarks // light quarks

Composite Scalar-Common features ex. Z', ρ_{TC} , Z_{KK} s=1 not crucial for WW scattering new gauge symms? ex. G_{KK} , f_2^{TC} s=2 Extra-Dimensions and TC-type see next ex. T, Q_{KK} , techni-baryons s=1 **√**3rd gen → 4th gen? New heavy quarks mix with SM quarks // light quarks see next

i.e. massive spin-2 resonance = smoking gun of extra-dimensions?

i.e. massive spin-2 resonance = smoking gun of extra-dimensions?

G KK-graviton TC-type impostor

i.e. massive spin-2 resonance = smoking gun of extra-dimensions?

G KK-graviton TC-type impostor

propagation

i.e. massive spin-2 resonance = smoking gun of extra-dimensions?

propagation

Pauli-Fierz

Pauli-Fierz

i.e. massive spin-2 resonance = smoking gun of extra-dimensions?

propagation

Pauli-Fierz

Pauli-Fierz

interactions

i.e. massive spin-2 resonance = smoking gun of extra-dimensions?

G KK-graviton TC-type impostor

propagation

Pauli-Fierz

Pauli-Fierz

interactions

 $\frac{c_i}{M}G_{\mu\nu}T^{\mu\nu}_{i,SM}$

i.e. massive spin-2 resonance = smoking gun of extra-dimensions?

propagation

Pauli-Fierz

Pauli-Fierz

interactions

 $\frac{c_i}{M}G_{\mu\nu}T^{\mu\nu}_{i,SM}$

 c_i overlap G with fields i and $M \sim \text{TeV}$

i.e. massive spin-2 resonance = smoking gun of extra-dimensions?

propagation

Pauli-Fierz

Pauli-Fierz

interactions

 $\frac{c_i}{M}G_{\mu\nu}T^{\mu\nu}_{i,SM}$

1

 c_i overlap G with fields i and $M \sim \text{TeV}$

How to tell apart a graviton from an impostor? Guimaraes, Fok, Lewis, VS in preparation \hat{G} couplings?

How to tell apart a graviton from an impostor? Guimaraes, Fok, Lewis, VS \hat{G} couplings?

Lorentz and gauge -> no dimension-4

How to tell apart a graviton from an impostor? Guimaraes, Fok, Lewis, VS \hat{G} couplings?

Lorentz and gauge \longrightarrow no dimension-4 flavor and CP invariant \longrightarrow dimension-5 same as in $T_{\mu\nu}$ How to tell apart a graviton from an impostor? Guimaraes, Fok, Lewis, VS \hat{G} couplings?

Lorentz and gauge \implies no dimension-4 flavor and CP invariant \implies dimension-5 same as in $T_{\mu\nu}$

 \hat{G} couples like G

same spin determination

How do we distinguish them?

How to tell apart a graviton from an impostor? $Br(\rightarrow aa) = \frac{8c^2}{2}$ Guimaraes, Fok, Lewis, VS in preparation

$$R_{g/\gamma} = \frac{Br(\rightarrow gg)}{Br(\rightarrow \gamma\gamma)} = \frac{8c_g^2}{c_\gamma^2}$$

In any extra-dimension of the type

$$ds^{2} = w(z)^{2} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} - dz^{2} \right)$$

example UED, RS

$$G:$$
 $R_{g/\gamma}=8$

 \hat{G} can produce any other ratio

How to tell apart 1st generation RH or LH compositeness? Martin and UHEP (201

Composite baryons and elementary quarks mix

Martin and VS JHEP (2010) Redi,VS, Weiler in preparation

 $\mathcal{L}_{mixing} = \lambda_{L,R}^{u} u_{L,R} U_L + (u \to d) \qquad \qquad y \propto \lambda_L \lambda_R$

How to tell apart 1st generation RH or LH compositeness? Martin and VS JHEP (2010)

Redi,VS, Weiler

in preparation

Composite baryons and elementary quarks mix

 $\mathcal{L}_{mixing} = \lambda_{L,R}^{u} u_{L,R} U_L + (u \to d) \qquad \qquad y \propto \lambda_L \lambda_R$

1st generation compositeness! Flavor?

How to tell apart 1st generation RH or LH compositeness? Martin and VS JHEP (2010)

Composite baryons and elementary quarks mix

$$\mathcal{L}_{mixing} = \lambda_{L,R}^{u} u_{L,R} U_L + (u \to d) \qquad \qquad y \propto \lambda_L \lambda_R$$

1st generation compositeness! Flavor? MFV if composite sector flavor invariant Redi, Weiler '11

Redi,VS, Weiler

in preparation

• Left-handed compositeness: $\begin{array}{ll} \lambda_{Lu} \propto Id, & \lambda_{Ld} \propto Id \\ \lambda_{Ru} \propto y_u, & \lambda_{Rd} \propto y_d \end{array}$ • Right-handed compositeness: $\begin{array}{ll} \lambda_{Lu} \propto y_u, & \lambda_{Ld} \propto y_d \\ \lambda_{Lu} \propto y_u, & \lambda_{Ld} \propto y_d \\ \lambda_{Ru} \propto Id, & \lambda_{Rd} \propto Id \end{array}$

How to tell apart 1st generation RH or LH compositeness? Martin and VS JHEP (2010)

Composite baryons and elementary quarks mix

$$\mathcal{L}_{mixing} = \lambda_{L,R}^{u} u_{L,R} U_L + (u \to d) \qquad \qquad y \propto \lambda_L \lambda_R$$

1st generation compositeness! Flavor? MFV if composite sector flavor invariant Redi, Weiler '11

Redi,VS, Weiler

in preparation

Signature: single production heavy quark

q

LH compositeness

Martin and VS JHEP (2010)

Figure 11: Single production invariant mass reconstruction in the $2 \ell + 2 j$ channel.

- 1. $n_{\ell} = 2$, same-flavor, opposite sign leptons and $m_{\ell\ell} = m_Z \pm 20 \text{ GeV}$
- 2. $n_j \geqslant 2,$ where $p_{T,2nd\,j} > 100$ GeV, $H_{T,j} > 800$ GeV and $m_{jj} < 45$ GeV or $m_{j,j} > 125$ GeV
- 3. $\Delta R_{Z,j} < 2$ for the nearest jet
- 4. $\not\!\!E_T < 150 \text{ GeV}$

W, Z

q

5. $m_{Z,i} > 500 \text{ GeV}$

W, Z

q

LH compositeness

Martin and VS JHEP (2010)

ATLAS-PH-EP-2011-193. Lepton channel w/ 1 ifb.

RH compositeness

Redi,VS, Weiler in preparation Looking at current bounds and discovery prospects

BGs: multijet, W+jets, Z+jets, top pair and single top ATLAS-PH-EP-2011-154 Rejection: exclude dijet near W or Z and veto b-tagging,

cut on leading jet

QCD generated with ALPGEN -> PYTHIA signal xsecs mQ=1 TeV, mG=2 TeV

Cuts	QCD 4 jets (fb)	Signal (fb)	
basic cuts	2×10^{9}	1300	
$p_T^{lead} > 700, p_T > 200$	100	354	
$p_T > 200$	2900	556	
$p_T > 100$	3.5×10^{5}	1040	
$p_T^{lead} > 500, p_T > 100$	9000	830	
$p_T^{lead} > 500, p_T > 200$	670	495	

RH compositeness

Redi,VS, Weiler in preparation

We use two methods: deltaR and leading jet optimized for high-low mQ

No Scalar-Generic features

Realized in warped extra-dimensions and TC-type s=1 resonances do unitarize WW scattering THE problem: S parameter solutions do not abound Eichten, Lane → Non-calculable, ignore TCSM Phys. Lett. B '89 -> Mechanisms to cancel, warped models - Cured Higgsless Cacciapaglia et al Phys. Rev. D '05 (s=1)-(s=1/2) cancellation -> Holographic TC Hirn,VS Phys. Rev. Lett. '06 s=1 cancellation

How to tell apart scenarios of dynamical EWSB?

Banerjee, Martin and VS

JHEP (2012)

In dileptons... 1. Invariant mass

TCSM 1200 HTC 10³ CHL 1000 CHL Arbitary Units Arbitary Units 10² 800 600 10 400 200 0 200 400 600 800 1000 1200 $m_{l^{+}l^{-}}$ (GeV) 700 600 650 750 800 850 900 550 $m_{l^{+}l^{-}}$ (GeV)

MG> PYTHIA> ATLFAST and DELPHES @7 TeV

How to tell apart scenarios of dynamical EWSB?

2. Charge asymmetry

Banerjee, Martin and VS JHEP (2012)

$$A_{\text{charge}} = \frac{N(\Delta \eta > 0) - N(\Delta \eta < 0)}{N(\Delta \eta > 0) + N(\Delta \eta < 0)} \qquad \Delta \eta = |\eta_{\ell^+}| - |\eta_{\ell^-}|$$

eta asym is a good measure of chirality

can tell V,A admixture

Conclusions

- Non-standard EWSB ideas abound and have a very rich phenomenology.
- May not be easy to discover by just looking at scalar EWSB sector. Need correlations with other signals.
- Tell apart Extra-Dimensions from TC-type: gravitons and its impostor
- Tell apart 1st gen RH or LH compositeness in multijets
- Tell apart different scenarios of DEWSB in dileptons

Operators

	$\hat{O}^{decay}_{\mu u}$	\mathbf{CP}	coefficients
(a)	$ar{\psi}\sigma_{\mu u}\psi$	_	\hat{c}_{f}^{a}
(b)	$ar{\psi}\gamma_\mu\partial_ u\psi$	+	\hat{c}_{f}^{b}
(c)	$ar{\psi}\gamma^5\gamma_\mu\partial_ u\psi$	-	\hat{c}_{f}^{c}

nionic operators up to dimension 5 that could lead to two-body attribute to \hat{G} decay because $\hat{G}^{\mu\nu}\sigma_{\mu\nu} = 0$. As long as we consiily, (c) must vanish as they are CP odd. The only remaining oper elative 4-momenta of the fermions because of the gauge condition term in the Lagrangian is $c_f^b \hat{G}^{\mu\nu} \hat{O}_{\mu\nu}^{decay}$. Expressions for the coeff

	$\hat{O}^{decay}_{\mu u}$	CP	coefficients
(a)	$F_{\mu}^{\ \rho}F_{\rho\nu}$	+	\hat{c}^a_A
(b)	$\epsilon_{\alpha\beta\mu\delta}F_{\nu}^{\ \delta}F^{\alpha\beta}$	-	\hat{c}^{b}_{A}
(c)	$F_{\mu\nu}$	+	\hat{c}^c_A
(d)	$\partial_{\mu}H \partial_{\nu}H$	+	\hat{c}_{ϕ}

ratio to gluons gluon-jet from quark-jet?

most models: G coupling to light quarks suppressed
 Angular correlations

 $\frac{d\sigma}{d\cos\theta^*}(q\bar{q}\to G) = 1 + c_{\theta^*}^2 \left(1 - 4s_{\theta^*}^2\right) \text{ to fermions}$ $= 1 - c_{\theta^*}^4 \text{ to gluons},$

3. Tag light jet using Galliccio-Schwartz techniques