Theoretical update of B-mixing

Alexander Lenz

CERN, Theory Division

TeVatron gave us many presents, and then ...

Mixing I

Time evolution of a decaying particle: $B(t) = \exp\left[-im_B t - \Gamma_B/2t\right]$ can be written as

$$i\frac{d}{dt} \begin{pmatrix} |B(t)\rangle \\ |\bar{B}(t)\rangle \end{pmatrix} = \left(\hat{M} - \frac{i}{2}\hat{\Gamma}\right) \begin{pmatrix} |B(t)\rangle \\ |\bar{B}(t)\rangle \end{pmatrix}$$

BUT: In the neutral B-system transitions like $B_{d,s} \to \bar{B}_{d,s}$ are possible due to weak interaction: **Box diagrams**

Mixing II

Mixing is a macroscopic quantum effect!

It was observed in

■ K^0 -system: 1950s (see text books, regeneration...)

■ B_d -system: 1986

■ B_s -system: 2006

■ *D*⁰-system: 2007

Strongly suppressed in the SM (due to virtual top-quarks)
New physics effects might be of comparable size

?Is QCD under control?

Mixing III

Time evolution of a decaying particle: $B(t) = \exp\left[-im_B t - \Gamma_B/2t\right]$

can be written as

$$i\frac{d}{dt} \begin{pmatrix} |B(t)\rangle \\ |\bar{B}(t)\rangle \end{pmatrix} = \left(\hat{M} - \frac{i}{2}\hat{\Gamma}\right) \begin{pmatrix} |B(t)\rangle \\ |\bar{B}(t)\rangle \end{pmatrix}$$

BUT: In the neutral B-system transitions like $B_{d,s} \to \bar{B}_{d,s}$ are possible due to weak interaction: **Box diagrams**

 \Rightarrow off-diagonal elements in $\hat{M}, \hat{\Gamma}$: M_{12} , Γ_{12} (complex)

Diagonalization of \hat{M} , $\hat{\Gamma}$ gives the physical eigenstates B_H and B_L with the masses M_H , M_L and the decay rates Γ_H , Γ_L

CP-odd: $B_H:=p\ B+q\ \bar{B}$, CP-even: $B_L:=p\ B-q\ \bar{B}$ with $|p|^2+|q|^2=1$

Mixing IV

 $|M_{12}|$, $|\Gamma_{12}|$ and $\phi = \arg(-M_{12}/\Gamma_{12})$ can be related to three observables:

- Mass difference: $\Delta M := M_H M_L = 2|M_{12}| \left(1 \frac{1}{8} \frac{|\Gamma_{12}|^2}{|M_{12}|^2} \sin^2 \phi + ...\right)$ $|M_{12}|$: heavy internal particles: t, SUSY, ...
- Decay rate difference: $\Delta\Gamma := \Gamma_L \Gamma_H = 2|\Gamma_{12}|\cos\phi\left(1 + \frac{1}{8}\frac{|\Gamma_{12}|^2}{|M_{12}|^2}\sin^2\phi + ...\right)$ $|\Gamma_{12}|$: light internal particles: u, c, ... (almost) no NP!!!
- Flavor specific/semileptonic CP asymmetries:

$$ar{B}_q o f$$
 and $B_q o ar{f}$ forbidden No direct CP violation: $|\langle f|B_q\rangle|=|\langle ar{f}|ar{B}_q\rangle|$ e.g. $B_s o D_s^-\pi^+$ or $B_q o Xl\nu$ (semileptonic)

$$a_{sl} \equiv a_{fs} = \frac{\Gamma(\overline{B}_q(t) \to f) - \Gamma(B_q(t) \to \overline{f})}{\Gamma(\overline{B}_q(t) \to f) + \Gamma(B_q(t) \to \overline{f})} = -2\left(\left|\frac{q}{p}\right| - 1\right) = \operatorname{Im}\frac{\Gamma_{12}}{M_{12}} = \frac{\Delta\Gamma}{\Delta M} \tan \phi$$

The Mass Difference ΔM

Calculating the box diagram with an internal top-quark yields

$$M_{12,q} = \frac{G_F^2}{12\pi^2} (V_{tq}^* V_{tb})^2 M_W^2 S_o(x_t) B_{B_q} f_{B_q}^2 M_{B_q} \hat{\eta}_B$$

(Inami, Lim '81)

- Hadronic matrix element: $\frac{8}{3}B_{B_q}f_{B_q}^2M_{B_q}=\langle \bar{B_q}|(\bar{b}q)_{V-A}(\bar{b}q)_{V-A}|B_q\rangle$
- Perturbative QCD corrections $\hat{\eta}_B$ (Buras, Jamin, Weisz, '90)

Theory 1102.4274 vs. Experiment: HFAG 11

$$\Delta M_d = 0.543 \pm 0.091 \; ps^{-1} \qquad \Delta M_d = 0.507 \pm 0.004 \; ps^{-1}$$
 ALEPH, CDF, D0, DELPHI, L3, OPAL, BABAR, BELLE, ARGUS, CLEO
$$\Delta M_s = 17.30 \pm 2.6 \; ps^{-1} \qquad \Delta M_s = 17.70 \pm 0.12 \; ps^{-1}$$
 CDF, D0, LHCb

Important bounds on the unitarity triangle and new physics

Determination of Γ_{12}

Sensitive to real intermediate states \Rightarrow much more complicated than M_{12}

- 1. OPE I: Integrate out W: like $M_{12} \propto f_B^2 B$
- 2. OPE II: Heavy quark expansion $\Rightarrow \Gamma_i^{(j)} \propto f_B^2 \sum C_k B_K$

$$\Gamma_{12} = \left(\frac{\Lambda}{m_b}\right)^3 \left(\Gamma_3^{(0)} + \frac{\alpha_s}{4\pi} \Gamma_3^{(1)} + \ldots\right) + \left(\frac{\Lambda}{m_b}\right)^4 \left(\Gamma_4^{(0)} + \ldots\right) + \left(\frac{\Lambda}{m_b}\right)^5 \left(\Gamma_5^{(0)} + \ldots\right) + \ldots$$

1996: Beneke, Buchalla, Dunietz

1998: Beneke, Buchalla, Greub, A.L., Nierste

2003: Ciuchini, Franco, Lubicz, Mescia, Tarantino; Beneke, Buchalla, A.L., Nierste

2006: A.L., Nierste

2007: Badin, Gabbiani, Petrov

$$\Delta\Gamma_s = \Delta\Gamma_s^0 \left(1 + \delta^{\text{Lattice}} + \delta^{\text{QCD}} + \delta^{\text{HQE}}\right)$$

= $0.142 \text{ ps}^{-1} \left(1 - 0.14 - 0.06 - 0.19\right)$

OPE II might be questionable - relies on quark hadron duality

■ Mid 90's: Missing Charm puzzle $n_c^{\rm Exp.} < n_c^{\rm SM}$, semi leptonic branching ratio

■ Mid 90's: Λ_b lifetime is too short

■ before 2003: $\tau_{B_s}/\tau_{B_d} \approx 0.94 \neq 1$

2010/2011: Di-muon asymmetry too large

- \Rightarrow calculate corrections in all possible "directions", to test convergence $\Rightarrow \Gamma_{12}$ seems to be ok!
- ⇒ test reliability of OPE II via lifetimes (no NP effects expected) "directions", to test convergence
 - $\Rightarrow \tau(B^+)/\tau(B_d)$ Experiment and theory agree within hadronic uncertainties

OPE II might be questionable - relies on quark hadron duality

■ 2012: $n_c^{2011\mathrm{PDG}}=1.20\pm0.06$ vs. $n_c^{\mathrm{SM}}=1.20\pm0.04$ Eberhardt, Krinner, A.L., Rauh in prep.

■ Mid 90's: Λ_b lifetime is too short

■ before 2003: $\tau_{B_s}/\tau_{B_d} \approx 0.94 \neq 1$

2010/2011: Di-muon asymmetry too large

- \Rightarrow calculate corrections in all possible "directions", to test convergence $\Rightarrow \Gamma_{12}$ seems to be ok!
- ⇒ test reliability of OPE II via lifetimes (no NP effects expected) "directions", to test convergence
 - $\Rightarrow \tau(B^+)/\tau(B_d)$ Experiment and theory agree within hadronic uncertainties

OPE II might be questionable - relies on quark hadron duality

- 2012: $n_c^{2011\mathrm{PDG}}=1.20\pm0.06$ vs. $n_c^{\mathrm{SM}}=1.20\pm0.04$ Eberhardt, Krinner, A.L., Rauh in prep.
- HFAG '03 $\tau_{\Lambda_b} = 1.212 \pm 0.052 \text{ ps}^{-1} \longrightarrow \text{HFAG}$ '11 $\tau_{\Lambda_b} = 1.425 \pm 0.032 \text{ ps}^{-1}$ Shift by $4\sigma \Rightarrow \text{Eagerly waiting for new LHCb results!!!}$
- before 2003: $\tau_{B_s}/\tau_{B_d} \approx 0.94 \neq 1$
- 2010/2011: Di-muon asymmetry too large

- \Rightarrow calculate corrections in all possible "directions", to test convergence $\Rightarrow \Gamma_{12}$ seems to be ok!
- ⇒ test reliability of OPE II via lifetimes (no NP effects expected) "directions", to test convergence
 - $\Rightarrow \tau(B^+)/\tau(B_d)$ Experiment and theory agree within hadronic uncertainties

OPE II might be questionable - relies on quark hadron duality

- 2012: $n_c^{2011\mathrm{PDG}}=1.20\pm0.06$ vs. $n_c^{\mathrm{SM}}=1.20\pm0.04$ Eberhardt, Krinner, A.L., Rauh in prep.
- HFAG '03 $\tau_{\Lambda_b} = 1.212 \pm 0.052 \text{ ps}^{-1} \longrightarrow \text{HFAG}$ '11 $\tau_{\Lambda_b} = 1.425 \pm 0.032 \text{ ps}^{-1}$ Shift by $4\sigma \Rightarrow \text{Eagerly waiting for new LHCb results!!!}$
- Moriond 2012 LHCb: $\tau_{B_s}/\tau_{B_d}=1.001\pm0.014$ Talk by Peter Clarke
- 2010/2011: Di-muon asymmetry too large

- \Rightarrow calculate corrections in all possible "directions", to test convergence $\Rightarrow \Gamma_{12}$ seems to be ok!
- ⇒ test reliability of OPE II via lifetimes (no NP effects expected) "directions", to test convergence
 - $\Rightarrow \tau(B^+)/\tau(B_d)$ Experiment and theory agree within hadronic uncertainties

The B_s lifetime

Moriond 2012 LHCb vs SM A.L., Nierste 2011

$$\frac{\tau_{B_s}}{\tau_{B_d}}^{\text{Exp}} = 1.001 \pm 0.014$$
 $\frac{\tau_{B_s}}{\tau_{B_d}}^{\text{SM}} = 0.996...1.000$

- 0.940 ± 0.014 would have been a desaster for SM = may be NP :-)
- Update of effective lifetimes Fleischer et al used 1011.1096, 1109.1112, 1109.5115: τ_{B_s} = 1.477 ps

	Exp.	SM-old	SM-new
$\tau^{\text{Eff}}(K^+K^-)$	1.44 ± 0.10	1.390 ± 0.032	1.43 ± 0.03
$ au^{\mathrm{Eff}}(\psi f_0)$	1.70 ± 0.12	1.582 ± 0.036	1.63 ± 0.03
$ au^{ ext{FS}}$	1.417 ± 0.042		1.54 ± 0.03

OPE II might be questionable - relies on quark hadron duality

- 2012: $n_c^{2011\mathrm{PDG}}=1.20\pm0.06$ vs. $n_c^{\mathrm{SM}}=1.20\pm0.04$ Eberhardt, Krinner, A.L., Rauh in prep.
- HFAG '03 $\tau_{\Lambda_b} = 1.212 \pm 0.052 \text{ ps}^{-1} \longrightarrow \text{HFAG}$ '11 $\tau_{\Lambda_b} = 1.425 \pm 0.032 \text{ ps}^{-1}$ Shift by $4\sigma \Rightarrow \text{Eagerly waiting for new LHCb results!!!}$
- Moriond 2012 LHCb: $\tau_{B_s}/\tau_{B_d}=1.001\pm0.014$ Talk by Peter Clarke
- 2010/2011: Di-muon asymmetry too large Test Γ_{12} with $\Delta\Gamma_s!$

- \Rightarrow calculate corrections in all possible "directions", to test convergence $\Rightarrow \Gamma_{12}$ seems to be ok!
- ⇒ test reliability of OPE II via lifetimes (no NP effects expected) "directions", to test convergence
 - $\Rightarrow \tau(B^+)/\tau(B_d)$ Experiment and theory agree within hadronic uncertainties

$\Delta\Gamma_s$ in NLO-QCD I

A brief history of theory predictions

$$\begin{array}{lll} \mbox{'81... Hagelin; Buras et al.;...} & \Delta\Gamma \propto \mathcal{O} \left(0.15 \ \mbox{ps}^{-1} \right) \\ \mbox{'93 Aleksan et al.;...} & \Delta\Gamma \propto \mathcal{O} \left(0.10 \ \mbox{ps}^{-1} \right) \\ \mbox{'96 Beneke, Buchalla, Dunietz} & \Delta\Gamma_s = \left(0.11^{+0.07}_{-0.06} \right) \mbox{ps}^{-1} \\ \mbox{'00 Beneke, A.L.} & \Delta\Gamma_s = \left(0.06 \pm 0.03 \right) \mbox{ps}^{-1} \\ \mbox{'03 Ciuchini, et al} & \Delta\Gamma_s = \left(0.050 \pm 0.016 \right) \mbox{ps}^{-1} \\ \mbox{'06 A.L., Nierste} & \Delta\Gamma_s = \left(0.096 \pm 0.036 \right) \mbox{ps}^{-1} \\ \mbox{'11 A.L., Nierste} & \Delta\Gamma_s = \left(0.087 \pm 0.021 \right) \mbox{ps}^{-1} \end{array}$$

Crucial dependence on non-perturbative parameters! 2011 $f_{B_s} = 231 \pm 15$ MeV used.

Newer Results:

- 1110.4510 HPQCD: $f_{B_s} = 225 \pm 4 \text{ MeV} \Rightarrow \Delta\Gamma_s = (0.083 \pm 0.017) \text{ ps}^{-1}$
- 1112.3051 Fermilab: $f_{B_s} = 242 \pm 9.5 \text{ MeV} \Rightarrow \Delta\Gamma_s = (0.095 \pm 0.021) \text{ ps}^{-1}$
- 1201.3956 chiral QM: $f_{B_s} = 262 \pm ?$ MeV $\Rightarrow \Delta \Gamma_s = (0.112 \pm ?) \, \mathrm{ps}^{-1}$

$\Delta\Gamma_s$ in NLO-QCD II

Improvement in theoretical accuracy

$\Delta\Gamma_s^{ m SM}$	2011	2006
Central Value	$0.087{\rm ps}^{-1}$	$0.096\mathrm{ps}^{-1}$
$\delta(\mathcal{B}_{\widetilde{R}_2})$	17.2%	15.7%
$\delta(f_{B_s})$	13.2%	33.4%
$\delta(\mu)$	7.8%	13.7%
$\delta(\widetilde{\mathcal{B}}_{S,B_s})$	4.8%	3.1%
$\delta(\mathcal{B}_{R_0})$	3.4%	3.0%
$\delta(V_{cb})$	3.4%	4.9%
$\delta(\mathcal{B}_{B_s})$	2.7%	6.6%
•••	• • • •	•••
$\sum \delta$	24.5%	40.5%

Finally $\Delta\Gamma_s$ is measured! (naive: 6.1σ)

$$\Delta\Gamma_s^{\rm SM} \ = \ (0.087 \pm 0.021)\,{\rm ps}^{-1}$$

LHCb from $B_s \to J/\psi \phi$

LP 2011
$$\Delta\Gamma_s = (0.123 \pm 0.031) \, \mathrm{ps}^{-1} \quad \Rightarrow \quad \frac{\Delta\Gamma_s^{\mathrm{Exp}}}{\Delta\Gamma_s^{\mathrm{SM}}} = 1.41 \pm 0.50$$

Moriond 2012
$$\Delta\Gamma_s = (0.116 \pm 0.019) \, \mathrm{ps}^{-1} \quad \Rightarrow \quad \frac{\Delta\Gamma_s^{\mathrm{Exp}}}{\Delta\Gamma_s^{\mathrm{SM}}} = 1.33 \pm 0.39$$

- D0 8fb $^{-1}$ 1109.3166: $\Delta\Gamma_s = (0.163 \pm 0.065) \, \mathrm{ps}^{-1}$
- CDF 9.6fb $^{-1}$: Talk by G. Borissov $\Delta\Gamma_s < \Delta\Gamma^{\rm SM}$

Finally $\Delta\Gamma_s$ is measured! (naive: 6.1σ)

Get rid off the dependence on f_{B_s} (No NP in ΔM)

$$\frac{\Delta\Gamma_s}{\Delta M_s} = 10^{-4} \cdot \left[46.2 + 10.6 \frac{\tilde{B}_S'}{B} - \left(13.2 \frac{B_{\tilde{R}_2}}{B} - 2.5 \frac{B_{R_0}}{B} + 1.2 \frac{B_R}{B} \right) \right]$$

$$= 0.0050 \pm 0.0010$$

HQE vs. Experiment

$$\left(\frac{\Delta\Gamma_s}{\Delta M_s}\right)^{\rm Exp} / \left(\frac{\Delta\Gamma_s}{\Delta M_s}\right)^{\rm SM} = 1.30 \pm 0.34$$

HQE works also for Γ_{12} !
How precise does it work? 30%? 10%?
Still more accurate data needed! TeVatron, LHCb, Super-B(elle)

$$\Delta\Gamma_s^{\text{CP}}/\Gamma_s = 2Br(B_s \to D_s^{(*)+} + D_s^{(*)-})$$
?

■ 1993 Aleksan; Le Yaouanc, Olivre, Pene, Raynal: The above equation holds in the limit: $m_c \to \infty$; $m_b - 2m_c \to 0$; $N_c \to \infty$ Corresponds to negligible 3-body final state contributions to Γ_{12}^s

$$\frac{\Delta\Gamma_s}{\Gamma_s} \propto \mathcal{O}(0.15)$$

- 1107.4325 Chua, Hou, Shen Reanalysis of the exclusive approach
 - 2-body final states contribute 0.100 ± 0.030 to $\Delta \Gamma / \Gamma$ Aleksan et al were lucky...
 - ◆ 3-body final states contribute about 0.06...0.08
 This is comparable to 2-body final states! ⇒ bad approximation ⇒ test exp.

We strongly discourage from the inclusion of $Br(Bs \to D^{(*)+} + D^{(*)-})$ in averages with $\Delta\Gamma_s$ determined from clean methods.

A.L., Nierste; hep-ph/0612167

Semi leptonic CP-asymmetries a_{fs} and $\Delta\Gamma_d$

SM predictions: A.L., U. Nierste, 1102.4274; A.L. 1108.1218

$$a_{fs}^{s} = (1.9 \pm 0.3) \cdot 10^{-5}$$
 $\phi_{s} = 0.22^{\circ} \pm 0.06^{\circ}$
 $a_{fs}^{d} = -(4.1 \pm 0.6) \cdot 10^{-4}$ $\phi_{d} = -4.3^{\circ} \pm 1.4^{\circ}$
 $A_{sl}^{b} = 0.406 a_{sl}^{s} + 0.594 a_{sl}^{d} = (-2.3 \pm 0.4) \cdot 10^{-4}$

Experimental bounds

$$a_{fs}^s = (-1150 \pm 610) \cdot 10^{-5}$$
 (HFAG 11)
 $\phi_s = -51.6^{\circ} \pm 12^{\circ}$ (A.L., Nierste, CKMfitter, 1008.1593)
 $= -0.1^{\circ} \pm 5.0^{\circ}$ LHCb Moriond 2012
 $a_{fs}^d = -(49 \pm 38) \cdot 10^{-4}$ (HFAG 11)
 $\frac{\Delta \Gamma_d}{\Gamma_d} = (-17 \pm 21) \cdot 10^{-3}$ (Belle EPS 2011)
 $A_{sl}^b = -(7.87 \pm 1.72 \pm 0.93) \cdot 10^{-3}$ (D0,1106.6308)

$$A^b_{sl}(Exp.)/A^b_{sl}(Theory) = \mathbf{34}$$
 3.9 $-\sigma$ -effect

$$3.9-\sigma$$
-effect

New Physics in B-Mixing I

$$\Gamma_{12,s} = \Gamma_{12,s}^{SM}, \qquad M_{12,s} = M_{12,s}^{SM} \cdot \Delta_s; \quad \Delta_s = |\Delta_s| e^{i\phi_s^{\Delta}}$$

$$\Delta_s = r_s^2 e^{2i\theta_s} = C_{B_s} e^{2i\phi_{B_s}} = 1 + h_s e^{2i\sigma_s}$$

$$\Delta M_{s} = 2|M_{12,s}^{\mathrm{SM}}| \cdot |\Delta_{s}|$$

$$\Delta \Gamma_{s} = 2|\Gamma_{12,s}| \cdot \cos\left(\phi_{s}^{\mathrm{SM}} + \phi_{s}^{\Delta}\right)$$

$$\frac{\Delta \Gamma_{s}}{\Delta M_{s}} = \frac{|\Gamma_{12,s}|}{|M_{12,s}^{\mathrm{SM}}|} \cdot \frac{\cos\left(\phi_{s}^{\mathrm{SM}} + \phi_{s}^{\Delta}\right)}{|\Delta_{s}|}$$

$$a_{fs}^{s} = \frac{|\Gamma_{12,s}|}{|M_{12,s}^{\mathrm{SM}}|} \cdot \frac{\sin\left(\phi_{s}^{\mathrm{SM}} + \phi_{s}^{\Delta}\right)}{|\Delta_{s}|}$$

$$\sin(\phi_{s}^{\mathrm{SM}}) \approx 1/240$$

For $|\Delta_s| = 0.9$ and $\phi_s^{\Delta} = -\pi/4$ one gets the following bounds in the complex Δ -plane:

New Physics in B-Mixing II

Combine all data till end of 2011 and neglect penguins fit of Δ_d and Δ_s 1203.0238 (update of 1008.1593) soon v2!

- Fits not so good anymore (LHCb vs. Dzero)
- $B \to \tau \nu$ vs. $\sin 2\beta$ solved with ϕ_d^{Δ} No tension for ϵ_K

The dimuon asymmetry

The central value of the di μ asymmetry is larger than theoretically possible!

$$A_{sl}^{Max.} \approx (0.594 \pm 0.022)(5.4 \pm 1.0) \cdot 10^{-3} \frac{\sin(\phi_d^{SM} + \phi_d^{\Delta})}{|\Delta_d|} + (0.406 \pm 0.022)(5.0 \pm 1.1) \cdot 10^{-3} \frac{\sin(\phi_s^{SM} + \phi_s^{\Delta})}{|\Delta_s|}$$

$$\approx (-3.1; -4.8[1\sigma]; -9.0[3\sigma]) \cdot 10^{-3}$$

$$A_{sl}^{D0} = (-7.8 \pm 2.0) \cdot 10^{-3}$$
A.L. 1108.1218

Possible solutions:

- HQE violated by $\mathcal{O}(200\% 3300\%)$ now excluded!
- Huge new physics in Γ_{12} ? see talk by Uli Haisch
- Contradiction to $B_s \to J/\psi \phi$ from LHCb? Penguins
- Stat. fluctuation (1.5 σ) of the D0 result? (Actual value is below -4.8 per mille?) Independent measurements of semi leptonic asymmetries needed!

?New physics in Γ_{12} **?**

■ Large ($\mathcal{O}(200 - 3400\%)$ NP effects in Γ_{12} ?

Why not seen somewhere else?

A new operator $bs \to X$ with $M_x < M_B$ contributes not only to a_{sl}^s but also to many more observables, e.g.:

$$\Gamma_3 \Rightarrow \begin{cases} \tau(B_s)/\tau(B_d) \\ \Delta\Gamma_s \end{cases}$$

$$\Gamma_0 \Rightarrow \begin{cases}
\tau(B_x) \\
B_{sl} \\
Br(b \to s \text{ no charm})
\end{cases}$$

- **♦** ...
- A promising candidate for X seems to be $\tau^+ + \tau^- \rightarrow Uli$ Haisch.

?New physics in Γ_{12} **?**

■ Missing charm puzzle, e.g.

Bigi et al '94; Bagan et al. '94; Falk, Wise, Dunietz '95, Neubert '97... A.L., hep-ph/0011258

Look at inclusive *b*-decay into 0, 1, 2 *c*-quarks

Define $r(x \text{ charm}) := \frac{\Gamma(b \to x \text{ charm})}{\Gamma_{sl}}$: $m_b^5 V_{cb}^2$ cancels; Γ_{sl} seems safe

The average number of charm quarks per b-decay reads

$$n_c = 0 + [r(1c) + 2r(2c)] B_{sl}^{Exp}.$$

$$= 1 + [r(2c) - r(0c)] B_{sl}^{Exp}.$$

$$= 2 - [r(1c) + 2r(0c)] B_{sl}^{Exp}.$$

Buchalla, Dunietz, Yamamoto '95

- $ullet n_c^{
 m Exp.} < n_c^{
 m Theory}$ = missing charm puzzle May be enhanced $b o s \ g...$ Kagan ...
- latest Data from BaBar and CLEO agree within large uncertainties
 Recent and future experiments can do better!
- Any unknown, even invisible decay mode has an effect on r(0, 1, 2 charm)

 $!!! \Rightarrow$ Need new experimental values for $r(0c, 1c, 2c) = \Gamma_{0c, 1c, 2c}/\Gamma_{sl}$ and $B_{sl}!!!$

?New physics in Γ_{12} **?**

Step I: Forget about all the bounds and fit $\Delta\Gamma$, a_{sl} and ΔM :

Step II: Take your favourite model which gives new contributions to Γ_{12}

- Determine contributions to δ_d , δ_s
- Determine contributions to τ_{B_s} , n_c ,
- Exclude the model :-)

How large are Penguins?

Angular analysis of $B_s \to J/\psi \phi$ at CDF, D0 and LHCb:

$$S_{\psi\phi}^{\rm SM} = 0.0036 \pm 0.002 \rightarrow \sin\left(2\beta_s - \phi_s^{\Delta} - \delta_s^{\rm Peng,SM} - \delta_s^{\rm Peng,NP}\right) = 0.002 \pm 0.087$$

LHCb Moriond 2012

Is this a contraction to the dimuon asymmetry?

Depends on the possible size of penguin contributions

- SM penguin are expected to be very small but see also Faller, Fleischer; Mannel 2008
- NP penguins might be larger

But: even small penguin contributions have a sizeable effect! A.L. 1106.3200

Wish-list for Experiments

- a) Congratulations to LHCb for the first measurement of $\Delta\Gamma_s!$
 - Still more precision needed: LHCb, TeVatron, Super-B $B_s \to J/\psi \eta^{(')}$
 - Do not use $Br(B_s \to D_s^{(*)+}D_s^{(*)-}) = \frac{\Delta\Gamma^{\rm CP}}{2\Gamma}$ check size of 3-body FS!
- b) $\tau_{B_s} = (1.001 \pm 0.014) \tau_{B_d}$: strong constraint on NP and duality violation
 - Combine with other determinations of τ_{B_s} : LHCb, ATLAS?, CMS?
 - B_s : Effective lifetimes, flavor specific lifetimes (2.x sigma deviation)
 - \bullet τ_{Λ_b}, \dots
- c) Di muon asymmetry A_{sl}^b
 - ◆ HQE fails? No! At most 30 40% more precise test via $\tau(B_s), \Delta\Gamma_s, ...$
 - NP acts in Γ_{12} ? No! At most 40%! More precise tests via $\tau(B_s), \Delta\Gamma_s, \Delta\Gamma_d, n_c, B_{sl}, r(0,1,2 \text{ charm}), B_s \to \tau\tau, B \to K\tau\tau, ...$
 - ***** ???
 - Experimental cross-check via a_{sl}^d and a_{sl}^s !
- d) $\phi_s^{LHCb} \ll \phi_s^{A_{sl}^b}$ How large is the penguin pollution?
 - Even small penguins can be important!
 - Values for many penguin modes e.g. $B_s \to J/\psi K_s, K^0 \bar{K}^0, \phi \phi, \eta^{(')} \eta^{(')}...$

What to do list - Theory

Test of HQE with lifetimes

- ullet au_{B^+}/ au_{B_d} and au_{B_s}/ au_{B_d} fits well \Rightarrow currently no hints for deviations from HQE
- Precise non-perturbative matrix elements for 4-quark operators urgently needed Beautiful Mesons and Baryons on the Lattice ECT* Trento, 2-6 April 2012
- Perturbative improvements of lifetime predictions

Theoretical predictions for mixing observables

- ullet Precise decay constants and Bag parameter for ΔM
- ullet Additional Bag parameters at dimension 6 and 7 for Γ_{12}
- α_s/m_b corrections for Γ_{12}
- α_s^2 corrections for Γ_{12}

Theoretical predictions for charm mixing observables

- Push HQE to its limits
- Try to imrove the exclusive approach

Update of theoretical predictions for inclusive rates

Moriond 2012: Conclusion from B-Mixing

It is actually not bad, what the Grinch left for us

Expansion in $1/m_b$ works so well, What does this tell about charm? $1/m_c \approx 3 \cdot 1/m_b$

CKM⁻: How large are Penguins? II

Many observables in the B_s mixing system:

Elimination of $\Gamma_{12}^{\rm Theo}$ via (No hint for incorrectness of $\Gamma_{12}^{\rm Theo}$ except: A_{sl}^b is 1.5σ above bound)

$$a_{sl}^{s} = -\frac{\Delta\Gamma}{\Delta M} \frac{S_{\psi\phi}}{\sqrt{1 - S_{\psi\phi^{2}}}} \cdot \delta$$

not possible at that simple level, because $\delta \neq 1$

$$\delta = \frac{\tan(\phi_s^{\text{SM}} + \phi_s^{\Delta})}{\tan(-2\beta_s^{\text{SM}} + \phi_s^{\Delta} + \delta_s^{\text{peng,NP}})}$$

A.L. 1106.3200

CKM⁻: How large are Penguins? III

lacksquare Above relation can be used to determine $\delta_s^{
m peng,SM} + \delta_s^{
m peng,NP}$

A.L. 1106.3200

lacksquare To extract ϕ_s^Δ one needs $\Gamma_{12}^{s,\mathrm{SM}}$

Lifetimes: τ_{B^+}/τ_{B_d} in NLO-QCD I

$$\frac{\tau_1}{\tau_2} = 1 + \left(\frac{\Lambda}{m_b}\right)^3 \left(\Gamma_3^{(0)} + \frac{\alpha_s}{4\pi} \Gamma_3^{(1)} + \ldots\right) + \left(\frac{\Lambda}{m_b}\right)^4 \left(\Gamma_4^{(0)} + \ldots\right) + \ldots$$

2002: Beneke, Buchalla, Greub, A.L., Nierste; Franco, Lubicz, Mescia, Tarantino 2004: Greub, A.L., Nierste; 2008 A.L.

$$\left[\frac{\tau(B^{+})}{\tau(B_{d}^{0})}\right]_{\text{LO,NLO,HFAG10}} = 1.047 \pm 0.049 \leftrightarrow 1.063 \pm 0.027 \leftrightarrow 1.071 \pm 0.009$$

Lifetimes: au_{B^+}/ au_{B_d} in NLO-QCD II

$$\frac{\tau_1}{\tau_2} = 1 + \left(\frac{\Lambda}{m_b}\right)^3 \left(\Gamma_3^{(0)} + \frac{\alpha_s}{4\pi} \Gamma_3^{(1)} + \ldots\right) + \left(\frac{\Lambda}{m_b}\right)^4 \left(\Gamma_4^{(0)} + \ldots\right) + \ldots$$

2002: Beneke, Buchalla, Greub, A.L., Nierste; Franco, Lubicz, Mescia, Tarantino 2004: Greub, A.L., Nierste; 2008 A.L.

$$\left[\frac{\tau(B^{+})}{\tau(B_{d}^{0})}\right]_{\text{LO,NLO,HFAG11}} = 1.047 \pm 0.049 \leftrightarrow 1.044 \pm 0.024 \leftrightarrow 1.079 \pm 0.007$$

Lifetimes: au_{B^+}/ au_{B_d} in NLO-QCD III

$$\frac{\tau_{B^+}}{\tau_{B_d}} - 1 = 0.0324 \left(\frac{f_B}{200 \text{MeV}}\right)^2 \qquad [(1.0 \pm 0.2)B_1 + (0.1 \pm 0.1)B_2 - (17.8 \pm 0.9)\epsilon_1 + (3.9 \pm 0.2)\epsilon_2 - 0.26]$$

with non-perturbative input from Becirevic hep-ph/0110124

$$B_1 = 1.10 \pm 0.20$$
 $B_2 = 0.79 \pm 0.10$
 $\epsilon_1 = -0.02 \pm 0.02$
 $\epsilon_2 = 0.03 \pm 0.01$

Update urgently needed!

Lifetimes: Lifetimes of heavy hadrons

lacktriangledown $au(B^+)/ au(B_d)$: HQE seems to fit, but we need urgently more precise hadronic matrix elements

 $\frac{ au(B_s)}{ au(B_d)} = 0.996...1.000 \leftrightarrow 0.969 \pm 0.017$ HFAG 2011 A.L. 1102.4274 \leftrightarrow 1.004 \pm 0.018 LHCb-Conf2011-049

More data as well as non-perturbative matrix elements needed

- \blacksquare $\tau(\Lambda_b)$, $\tau(\Xi_b)$ and $\tau(B_c)$: more data and further theory work (perturbative and non-perturbative) neccessary
- $\tau(D)$, D-mixing: work in progress Bigi, Uraltsev 2001; Bobrowski, A.L., Riedl, Rohrwild 1002.4794; 1011.5608; Bobrowski, A.L. Nierste, Prill, to appear It is not unplausible that HQE might give reasonable estimates

Theory statements about CPV in D before LHCb

Submission history

From: Alexander Lenz [view email]

[v1] Thu, 25 Feb 2010 14:27:00 GMT (97kb)

Which authors of this paper are endorsers?