Studies of the decay $B_s^0 \rightarrow D_s^+K^-$

Barbara Storaci
on behalf of the LHCb Collaboration

Motivation

Why is $B_s^0 \to D_s^+ K^-$ interesting?

- Test SM through CKM-unitarity triangle
- \clubsuit γ the least constraint parameters by direct measurements

- ♣ Clean time-dependent measurement with $B^0_s \rightarrow D_s^+ K^-$
- \blacksquare BR(B⁰_s \rightarrow D_s+K⁻) still poorly known, ± 23%

[K. Nakamura et al. (Particle Data Group), Journal of Physics G37, 075021 (2010)]

♣ → Today the World Best Measurement of its BR

- Final state D_s- K⁺ accessible by both B⁰_s and B⁰_s
- Large interference expected

Key ingredients:

Large b production rate

- Final state D_s- K⁺ accessible by both B⁰_s and B⁰_s
- Large interference expected

Key ingredients:

Large b production rate

~60 kHz bb

- Final state D_s- K⁺ accessible by both B⁰_s and B⁰_s
- Large interference expected

Key ingredients:

- Large b production rate
- Excellent Proper Time Resolution

~60 kHz bb

- Final state D_s- K⁺ accessible by both B⁰_s and B⁰_s
- Large interference expected

Key ingredients:

- Large b production rate
- Excellent Proper Time Resolution

~60 kHz bb

~50 fs

- Final state D_s- K⁺ accessible by both B⁰_s and B⁰_s
- Large interference expected

Key ingredients:

- Large b production rate
- Excellent Proper Time Resolution
- Excellent Particle Identification (PID)

~60 kHz bb

~50 fs

- Final state D_s- K⁺ accessible by both B⁰_s and B⁰_s
- Large interference expected

Key ingredients:

- Large b production rate
- Excellent Proper Time Resolution
- Excellent Particle Identification (PID)

~60 kHz bb

~50 fs

 $\epsilon_{\rm K}^{\sim}95\%$, O(<5%) π -K misid

- Final state D_s- K⁺ accessible by both B⁰_s and B⁰_s
- Large interference expected

Key ingredients:

- Large b production rate
- Excellent Proper Time Resolution
- Excellent Particle Identification (PID)
- Sensitivity to hadronic final states

~60 kHz bb

~50 fs

 $\epsilon_{\rm K}^{\sim}95\%$, O(<5%) π -K misid

- Final state D_s- K⁺ accessible by both B⁰_s and B⁰_s
- Large interference expected

Key ingredients:

- Large b production rate
- Excellent Proper Time Resolution
- Excellent Particle Identification (PID)
- Sensitivity to hadronic final states

~60 kHz bb

~50 fs

 $\epsilon_{\rm K}^{\sim}95\%$, O(<5%) π -K misid

specific hadronic trigger

First step is the Branching Fraction measurement!

Signal

- ♣ 0.37 fb⁻¹ of LHCb data used (first part of 2011)
- 3 decays with the same topology

$$\begin{array}{l} B^{0} \to D^{-}(K^{+}2\pi^{-})\pi^{+} \\ B^{0}_{s} \to D^{-}_{s}(K^{+}K^{-}\pi^{-})\pi^{+} \\ B^{0}_{s} \to D^{\pm}_{s}(K^{\mp}K^{\pm}\pi^{\pm})K^{\mp} \end{array} \end{array} \begin{array}{c} \text{Meas. of BR(} B^{0}_{s} \to D^{-}_{s}\pi^{+}) \\ \text{using fs/fd meas. In LHCb} \\ \text{arXiv:1111.2357 [hep-ex]} \\ \text{Meas. of BR(} B^{0}_{s} \to D^{\pm}_{s}K^{\mp}) \end{array}$$

- ✓ Same trigger, stripping and offline selection (using BDT) to minimize efficiency corrections
- ✓ PID applied at the latest stage for distinguishing these decays channels

Combinatorial Background:

- Random π or K forming fake D or Ds
- Real prompt D or Ds combined with random π or K to form a fake B⁰ or B⁰_s

Our selection is efficiently cutting it!

 $Mass\ (MeV/c^2)$

1. Combinatorial Background:

- Random π or K forming fake D or Ds
- Real prompt D or Ds combined with random π or K to form a fake B⁰ or B⁰_s

Partially Reconstructed Background:

– Lost one particle in the reconstruction, ex: $B_s^0 \to D_s^- \rho^+$ where the π⁰ from the ρ⁺ is missed

1. Combinatorial Background:

- Random π or K forming fake D or Ds
- Real prompt D or Ds combined with random π or K to form a fake B⁰ or B⁰_s
- Partially Reconstructed Background:
 - Lost one particle in the reconstruction, ex: $B_s^0 o D_s^- \rho^+$ where the π^0 from the ρ⁺ is missed

3. Misidentified Background:

 $- B^0 \to (D^- \to D_s^-)\pi^+$ under $B_s^0 \rightarrow D_s^- \pi^+$

Sitting under the signal

1. Combinatorial Background:

- Random π or K forming fake D or Ds
- Real prompt D or Ds combined with random π or K to form a fake B⁰ or B⁰_s

2. Partially Reconstructed Background:

– Lost one particle in the reconstruction, ex: $B_s^0 \to D_s^- \rho^+$ where the π⁰ from the ρ⁺ is missed

3. Misidentified Background:

 $-B^{0} \to (D^{-} \to D_{s}^{-})\pi^{+}$ $\text{under } B_{s}^{0} \to D_{s}^{-}\pi^{+}$ $-B^{0} \to (D^{-} \to D_{s}^{-})K^{+}$ $\text{under } B_{s}^{0} \to D_{s}^{-}K^{+}$ $-B_{s}^{0} \to D_{s}^{-}(\pi^{+} \to K^{+})$ $\text{under } B_{s}^{0} \to D_{s}^{-}K^{+}$ $-B^{0} \to (D^{-} \to D_{s}^{-})(\pi^{+} \to K^{+})$ $\text{under } B_{s}^{0} \to D_{s}^{-}K^{+}$

Fit Strategy

Signal shape: double crystal ball function **Background shapes:**

- MisID: from data using a reweighting procedure to correct for the momentum dependency of PID selection
- Part. Reco: template from MC
 - Gaussian constraint on the yields if the BR known or estimable

- Comb: exponential shape for $B_{(s)}^0 \to D_{(s)}^- \pi_s^+$, flat for $B_s^0 \to D_s^{\pm} K^{\mp}$

- Checked with wrong-sign sample
- Sample divided according to the magnet polarities to achieve maximum sensitivity
- Simultaneous fit: same signal shape for both polarities

BR($B_s \rightarrow D_s \pi^+$)

 $Ns(Down) = 20150 \pm 152$ $Ns(Up) = 16304 \pm 137$

Both polarities together for illustrative purpose

 $Ns(Down) = 3369 \pm 69$ $Ns(Up) = 2677 \pm 62$

$$\mathcal{B}(B_{s}^{0} \to D_{s}^{-}\pi^{+}) = \mathcal{B}\left(B^{0} \to D^{-}\pi^{+}\right) \frac{\epsilon_{B^{0} \to D^{-}\pi^{+}}}{\epsilon_{B_{s}^{0} \to D_{s}^{-}\pi^{+}}} \frac{N_{B_{s}^{0} \to D_{s}^{-}\pi^{+}}\mathcal{B}\left(D^{+} \to K^{-}\pi^{+}\pi^{+}\right)}{\frac{f_{s}}{f_{d}}N_{B^{0} \to D^{-}\pi^{+}}\mathcal{B}\left(D_{s}^{+} \to K^{+}K^{-}\pi^{+}\right)}$$

Using LHCb mesurement: $\frac{f_s}{f_s} = (0.268 \pm 0.008)^{+0.022}_{-0.020}$ arXiv:1111.2357 [hep-ex]

$$\frac{f_s}{f_d} = (0.268 \pm 0.008)^{+0.022}_{-0.020}$$

$$\mathcal{B}(B_s^0 \to D_s^- \pi^+) = (2.95 \pm 0.05 \pm 0.17^{+0.18}_{-0.22}) \times 10^{-3}$$
 Stat. Syst. From f./f_d.

Previous Best Measurement:

 $(3.2 \pm 0.5) \times 10^{-3}$

[K. Nakamura et al. (Particle Data Group), Journal of Physics G37, 075021 (2010)]

$BR(B_s^0 \rightarrow D_s^+K^-)$

Both polarities together for illustrative purpose

$$\mathcal{B}(B_s^0 \to D_s^- K^+) = (1.90 \pm 0.12 \pm 0.13^{+0.12}_{-0.14}) \times 10^{-4}$$
 Stat. Syst. From f,/f_d.

Previous Best Measurement:

 $(3.0 \pm 0.7) \times 10^{-4}$

[K. Nakamura et al. (Particle Data Group), Journal of Physics G37, 075021 (2010)]

Conclusions

- World best measurement of the BR(B⁰_s \rightarrow D_s⁻ π ⁺) and BR(B⁰_s \rightarrow D_s⁺K⁻) with 0.37 fb⁻¹ collected in LHCb
 - B_s^0 → $D_s^+K^-$ measurement in agreement with prev. measurements, error reduced to ~12%
 - $-B_s^0 \rightarrow D_s^- \pi^+$: best known B_s^0 mode now with an uncertainty of ~10% (before was ~16%)
- Fist step through the measurement of γ with a $B_s^0 \to D_s^+ K^-$ time-dependent analysis
 - We already have 1.0 fb⁻¹ of data collected last year

Backup

Gaussian Const. $B_s^0 \rightarrow D_s^-K^+$

Table 3: Gaussian constraints applied in the $B_s^0 \to D_s^- K^+$ fit.

Background type	Magn. Down	Magn. Up
$B_s^0 \to D_s^{*-} \pi^+$	70 ± 23	63 ± 21
$B_s^0 \rightarrow D_s^{*-} K^+$	80 ± 27	72 ± 34
$B_s^0 \rightarrow D_s^- \rho^+$	150 ± 50	135 ± 45
$B_s^0 \rightarrow D_s^- K^{*+}$	150 ± 50	135 ± 45
$B_s^0 \rightarrow D_s^{*-} \rho^+$	50 ± 17	45 ± 15
$B_s^0 \rightarrow D_s^{*-}K^{*+}$	50 ± 17	45 ± 15
$\Lambda_b \to D_s^- p + \Lambda_b \to D_s^{*-} p$	80 ± 27	72 ± 34

Systematic uncertainties

Table 4: The final systematic uncertainities for the measurement of the branching fractions of $B_s^0 \to D_s^- K^+$ and $B_s^0 \to D_s^- \pi^+$.

Source	Uncertainty
All non-PID selection $(B_s^0 \to D_s^- K^+ \text{ wrt. } B_s^0 \to D_s^- \pi^+)$	2%
All non-PID selection $(B^0 \to D^-\pi^+ \text{ wrt. } B_s^0 \to D_s^-\pi^+)$	2%
All non-PID selection $(B_s^0 \to D_s^- K^+ \text{ wrt. } B^0 \to D^- \pi^+)$	3%
Fit model $B^0 \to D^- \pi^+$	1.0%
Fit model $B_s^0 \to D_s^- \pi^+$	1.4%
Fit model $B_s^0 \to D_s^- K^+$	2.0%
PID selection $(B_s^0 \to D_s^- K^+ \text{ wrt. } B_s^0 \to D_s^- \pi^+)$	1.8%
PID selection $(B^0 \to D^- \pi^+ \text{ wrt. } B_s^0 \to D_s^- \pi^+)$	1.3%
PID selection $(B_s^0 \to D_s^- K^+ \text{ wrt. } B^0 \to D^- \pi^+)$	2.2%
Efficiency ratio $(B_s^0 \to D_s^- K^+ \text{ wrt. } B_s^0 \to D_s^- \pi^+)$	1.5%
Efficiency ratio $(B^0 \to D^- \pi^+ \text{ wrt. } B_s^0 \to D_s^- \pi^+)$	1.6%
Efficiency ratio $(B_s^0 \to D_s^- K^+ \text{ wrt. } B^0 \to D^- \pi^+)$	1.6%
Total $(B_s^0 \to D_s^- K^+ \text{ wrt. } B_s^0 \to D_s^- \pi^+)$	±3.9%
Total $(B^0 \to D^- \pi^+ \text{ wrt. } B_s^0 \to D_s^- \pi^+)$	$\pm 3.4\%$
Total $(B_s^0 \to D_s^- K^+ \text{ wrt. } B^0 \to D^- \pi^+)$	$\pm 4.6\%$

PID selection efficiencies

Table 1: PID efficiency and misidentification probabilities, split by magnet polarity. The first two lines refer to the bachelor track selection, the third line is the D^- efficiency and the fourth the D_s^- efficiency. Probabilities are obtained from the efficiencies in the D^* calibration sample, binned in momentum and $p_{\rm T}$. Only bachelor tracks with momentum below $100~{\rm GeV}/c^2$ are considered. The uncertainties shown are the statistical uncertainties due to the finite number of signal events used in the reweighting.

	PID Cut	Efficiency		MisID	
		Mag. Down	Mag. Up	Mag. Down	Mag. Up
K	$DLL_{K-\pi} > 5$	$(83.5 \pm 0.2) \%$	$(83.3 \pm 0.2) \%$	$(4.5 \pm 0.1) \%$	$(5.3 \pm 0.1) \%$
π	$DLL_{K-\pi} < 0$	$(85.8 \pm 0.2) \%$	$(84.2 \pm 0.2) \%$	$(5.4 \pm 0.1) \%$	$(5.3 \pm 0.1) \%$
D^{-}		85.7 ± 0.2	84.1 ± 0.2	N/A	N/A
D_s^-		78.4 ± 0.2	77.6 ± 0.2	N/A	N/A

PID calibration

PID performance performed on data from D* sample

- Evaluated eff. and midID rate on D* sample for the PID cuts applied in the analysis (in bins of p and pt)
- No dependence on track multiplicity since both signal and contr. channel are selected with the same trigger
- Different curve for magnet up and magnet down