Astrophyiscal Limits on Lorentz Invariance Violation At the Planck Scale

Tsvi Piran The Hebrew University Giovanni Amelino-Camelia, Jonathan Granot, Yuan Chuan Zou, Uri Jacob Moriond 2012

Lorentz Violation (or deformation) appears in various Quantum Gravity Theories.

Lorentz Violation (or deformation) appears in various Quantum Gravity Theories.

Lorentz Violation (or deformation) appears in various Quantum Gravity Theories.

Lorentz Violation (or deformation) appears in various Quantum Gravity Theories.

A phenomenological approach

The simplest leading order low-energy approximation of any theory that breaks Lorentz Invariance at a very high energy scale: ξm_{pl} , for the deformed dispersion relation is:

$$E^{2} - p^{2} - m^{2} \approx \pm \left(\frac{E}{\xi_{n}m_{pl}}\right)^{n}$$
$$v \approx c \left[1 \pm \frac{(1+n)}{2} \left(\frac{E}{\xi_{n}m_{pl}}\right)^{n}\right]$$

$$E^{2} \approx (pc)^{2} \left[1 + \left(\frac{E}{\xi m_{pl}} \frac{1}{j} \right)^{n} \right]$$

$$v \approx c \left[1 + \frac{(1+n)}{2} \left(\frac{E}{\xi m_{pl}} \frac{1}{j} \right)^{n} \right]$$

$$dt \approx \pm \frac{d}{c} \left(\frac{E}{\xi_{n} m_{pl}} \frac{1}{j} \right)^{n} \approx 10^{-2 - (n-1)19} \sec \left(\frac{E}{\xi_{n} \text{ GeV}} \frac{1}{j} \right)^{n}$$

Energy dependent arrival time (Amelino-Camelia et al., 1998)

0

 γ_1

 γ_2

 $E^{2} = p^{2}c^{2} + E^{2}(E/\zeta M_{pl})^{n}$ $E_{QG} \equiv \zeta M_{pl}$

Energy dependent arrival time (Amelino-Camelia et al., 1998)

 γ_1

 γ_2

 $E^{2} = p^{2}c^{2} + E^{2}(E/\zeta M_{pl})^{n}$ $E_{QG} \equiv \zeta M_{pl}$

Energy dependent arrival time (Amelino-Camelia et al., 1998)

 $\log E (GeV)$

 γ_1

 γ_2

 $E^{2} = p^{2}c^{2} + E^{2}(E/\zeta M_{pl})^{n}$ $E_{QG} \equiv \zeta M_{pl}$

Fermi's observations of GRB 050910

Z=0.903 $\Delta t_{0.1MeV-30GeV} < 0.9sec$ $\Rightarrow E^{(1)}_{QG} > 1.2 \cdot 10^{19} \text{ GeV} = 1.2 \text{ m}_{pl}$

t_{start}	limit on	Reason for choice of	E_l	valid	lower limit on	limit on $M_{QG,2}$
(ms)	$ \Delta t $ (ms)	t_{start} or limit on Δt	(MeV)	for s_n	$M_{\rm QG,1}/M_{\rm Planck}$	in $10^{10} { m GeV}/c^2$
-30	< 859	start of any observed emission	0.1	1	> 1.19	> 2.99
530	< 299	start of main $< 1 \text{ MeV}$ emission	0.1	1	> 3.42	> 5.06
630	< 199	start of > 100 MeV emission	100	1	> 5.12	> 6.20
730	< 99	start of $> 1 \text{ GeV}$ emission	1000	1	> 10.0	> 8.79
	< 10	association with $< 1 \mathrm{MeV}$ spike	0.1	± 1	> 102	> 27.7
	< 19	if 0.75 GeV γ is from 1 st spike	0.1	- 1	> 1.33	> 0.54
$ \Delta t/\Delta E < 30 \text{ ms/GeV}$		lag analysis of all LAT events		± 1	> 1.22	_

GRB photons & high energy neutrinos Expect 10 neutrinos detected in a km³ detector per 1000 GRBs

Stochastic (fuzzy) photon motion

Stochastic (fuzzy) photon motion

Stochastic (fuzzy) photon propagation Amelino Camelia & Smolin 08

 $\delta v(E) = \left(\frac{E}{\xi_f M_{pl}}\right)^n$ $\delta T(E) = \delta v(E)T$

low energy _ photons

time

Stochastic (fuzzy) photon propagation Amelino Camelia & Smolin 08

 $\delta v(E) = \left(\frac{E}{\xi_f M_{pl}}\right)$ $\delta T(E) = \delta v(E)T$

high energy photons low energy

photons

time

GRB 090510

 $f_{em} + (\Delta f/dE)_{s} E + f(\delta T/dE)_{f} E$ f is a random Gaussian variable We find a preliminary limit ($\delta T/dE$)_f<0.4sec/GeV.

This should be compared with the limit $(\Delta t/dE)_{s} < 0.01 sec/GeV$ for the systematic shift.

Conclusions

- GRBs timing gives the best limits on the scale of possible Lorentz violation: E⁽¹⁾LV> 10¹⁹ GeV
- High energy neutrinos are essential for $n \ge 2$.
- GRB neutrinos provide the best venue for detecting of setting upper limits on Loretnz violation with any $n \ge 2$.
- GRB photons can also serve to put a limit on models with stochastic (fuzzy) motion of the photons. Our <u>preliminary</u> limit is E_{LV,f}> 0.5 10¹⁸ GeV

Spectral Lags (Norris, Marani & Bonnel, 99)

Tsvi Piran TAU March 07

High Energy Emission from GRBs (EAGRET)

This can be viewed as a random motion