DAMA and CoGeNT - muon background and higher harmonics

Josef Pradler
Perimeter Institute

with Spencer Chang and Itay Yavin

arXiv: 1111.4222 (PRD, to appear)

Moriond EW, March 5, 2012

one species three signals?

- DAMA: 250kg of scintillating NaI crystals, running since 1995, exposure in excess of I ton x year, no discrimination
- CoGeNT: 440 gram Ge crystal, 442 live days; ionization only, no discrimination
- CRESST: scintillation and phonons; 730 kg days, multi-target

one species three signals?

- DAMA: 250kg of scintillating Nal crystals, running since 1995, exposure in excess of I ton x year, no discrimination
- CoGeNT: 440 gram Ge crystal, 442 live days; ionization only, no discrimination
- CRESST: scintillation and phonons; 730 kg days, multi-target

"take home message"

- cosmic muons as origin for DAMA modulation strongly disfavoured
 - different in phase
 - different in correlation
 - possibly different in power
 - possibly different in amplitude
- similar conclusions hold for CoGeNT modulation
- there is more than "one modulation"

signal modulation in direct detection

$$\frac{dR}{dE_R} = N_T \, n_{\rm DM} \int_{v \ge v_{min}} d^3 \mathbf{v} \, v f_{\rm LAB}(\mathbf{v}) \frac{d\sigma}{dE_R} \qquad [cpd/kg/keV]$$

$$f_{\rm GAL}(\mathbf{v}_{\rm obs} + \mathbf{v})$$

signal modulation in direct detection

$$\frac{dR}{dE_R} = N_T \, n_{\rm DM} \int_{v \ge v_{min}} d^3 \mathbf{v} \, v f_{\rm LAB}(\mathbf{v}) \frac{d\sigma}{dE_R} \qquad [\text{cpd/kg/keV}]$$

$$\int_{\rm GAL}(\mathbf{v}_{\rm obs} + \mathbf{v})$$

$$\mathbf{v}_{\mathrm{obs}} = \mathbf{v}_{\odot} + V_{\oplus} \left[\varepsilon_{1} \cos \omega \left(t - t_{1} \right) + \varepsilon_{2} \sin \omega \left(t - t_{1} \right) \right]$$

$$|\mathbf{v}_{\rm obs}| = |\mathbf{v}_{\odot}| + \frac{1}{2}V_{\oplus}\cos\omega(t - t_0)$$

 $t_0 \simeq 152 \, \mathrm{days}$ (June 2nd)

see e.g. [Druiker et al, 1986; Freese et al, 1988; Savage et al, 2009]

signal modulation in direct detection

annual modulation
$$\frac{dR(t)}{dE_R} \propto \int_{v_{min}}^{\infty} \frac{f(v)}{v} dv \simeq c_0(v_{min}) + c_1(v_{min}) \cos{[\omega(t-t_0)]}$$

$$v_{min} = \frac{1}{\sqrt{2m_N E_R}} \left(\frac{m_N E_R}{\mu_{N\chi}} + \delta \right)$$

 $t_0 \simeq 152 \, \mathrm{days}$ (June 2nd)

[using f(v) from Lisanti et al, 2010]

~3% \\ \frac{1}{10AMA/LIBRA}

- scintillation from Nal-crystals
- 8σ+ modulation
- phase consistent as expected from WIMPs

$$t_0 \simeq 2 \text{ June}$$

$$= 152.5 \text{ days}$$

[Bernabei et al. 2010]

Muon Flux underground

$\mu^ \pi^ \pi^ \pi^+$ $\tau^ \tau^ \tau^-$

--- modulates too ---

- underground flux sourced mainly by primary meson decays (pions, kaons,...) => muons need to be TeV-like to reach underground
- competition between secondary meson interactions vs. decay depends on air-density
 - => muon flux correlated with temperature

$$\frac{\Delta I_{\mu}}{I_{\mu}^{0}} = \alpha_{T} \frac{\Delta T_{\text{eff}}}{T_{\text{eff}}} \qquad T_{\text{eff}} = \int_{0}^{\infty} dX \, T(X) W(X)$$

flux peaks in Summer (on northern hemisphere)

Muon Flux underground

- many measurements available, correlation with $T_{
 m eff}$ firmly established
 - LNGS: Macro, LVD, Borexino (DAMA location)
 - Soudan Mine: MINOS (CoGeNT location)
 - South Pole: Icecube

 Large Volume liquid scintillator Detector (LVD) reports underground muon-flux at LNGS => temporal overlap with DAMA data

 $\overline{I}_{\mu} \sim 30/{
m day/m^2}$ @ DAMA site

[Selvi, 2009]

 recent renewed interest in muons as DAMA background, see e.g. [Ralston, 2010], [Nygren, 2011], [Blum, 2011]

very recent response by DAMA [Bernabei, 2012]

 recent renewed interest in muons as DAMA background, see e.g. [Ralston, 2010], [Nygren, 2011], [Blum, 2011]

very recent response by DAMA [Bernabei, 2012]

- muons can either directly hit the detector or indirectly, by spallation of nuclei which leads to neutron flux
 - => guaranteed source of background
- in this talk we will base our analysis exclusively on the time-series of events in both data sets
 - => we are ignorant to how the signal formation process concretely happens
 - => but if we can make firm statements already it means that this approach is very model-independent and thus conservative

• evenly spaced data $d_i = d(t_i)$ discrete FT

$$P(\omega) \propto \left| \sum_{i} d_{i} \exp(-i\omega t_{i}) \right|^{2} = \left[\left(\sum_{i} d_{i} \cos(\omega t_{i}) \right)^{2} + \left(\sum_{i} d_{i} \sin(\omega t_{i}) \right)^{2} \right]$$

unevenly spaced data: Lomb-Scargle Periodogram

$$LS(\omega) = \frac{1}{2} \left\{ \frac{1}{\sum_{i} \cos^{2}(\omega \tilde{t}_{i})} \left[\sum_{i} d_{i} \cos(\omega \tilde{t}_{i}) \right]^{2} + \frac{1}{\sum_{i} \sin^{2}(\omega \tilde{t}_{i})} \left[\sum_{i} d_{i} \sin(\omega \tilde{t}_{i}) \right]^{2} \right\}$$

$$\tilde{t}_i \equiv t_i - \tau$$

- invariant to shifts in time origin
- if d_i is pure noise (with unit variance)

$$\Pr(P > p) = e^{-p}$$

DAMA/LIBRA

no power on timescales > lyr

BUT

LVD muons

adopting DAMA's procedure of subtracting baseline on each cycle suppresses power on timescales longer than I yr (see also Blum, 2011)

DAMA/LIBRA, 2012

LS of baselines
O(10) data points, no significant power!

DAMA/LIBRA, 2012

LS of baselines O(10) data points, no significant power!

LVD muons

LS of muon baselines
O(10) data points
no significant power neither!

DAMA/LIBRA, 2012

- with a small dataset it is hard to achieve statistical significance
 - => normalized power

$$P(\omega) = LS(\omega)/\sigma^2$$

 power spectrum of baselines alone does NOT convincingly show that there is indeed no long term modulation in DAMA

=> DAMA should provide baseline rates

- interpret data as sinusoidal variations
- phase of DAMA/LIBRA incompatible with muons

@
$$\omega = 2\pi/1 \text{yr}$$
:

$$t_0({\rm DAMA}) = (131 \pm 13) \,{\rm days}$$

$$t_0(LVD) = (187 \pm 2) \, days$$

- two studies suggest that phase can potentially in agreement
 - Selvi for LVD collaboration finds

$$t_0(\text{LVD})_{\text{LVD-collab}} = (185 \pm 15) \,\text{days}$$

 $\chi^2/dof = 577/362$

adopting this procedure we find

$$t_0(LVD) = (186 \pm 2) \text{ days !}$$

[Selvi for LVD, 2009]

- two studies suggest that phase can potentially in agreement
 - I. Selvi for LVD collaboration finds

$$t_0(\text{LVD})_{\text{LVD-collab}} = (185 \pm 15) \,\text{days}$$
 $\chi^2/dof = 577/362$

adopting this procedure we find

$$t_0(LVD) = (186 \pm 2) \text{ days !}$$

[Selvi for LVD, 2009]

suspecting that Selvi used reduced χ^2 for construction of confidence region => confidence interval overestimated

- two studies suggest that phase can potentially in agreement
 - 2. Blum, 2011: nice observation that *direct* hits by muons induce produce too large spread in signal, BUT

$$s_i = \frac{y N_{\mu,i}}{M \Delta E \epsilon_i t_i} \qquad \qquad \text{count rate in DAMA bin i} \\ y = \text{signal counts / muon}$$

$$\langle N_{\mu,i} \rangle = A_{\rm eff} I_{\mu,i} \epsilon_i t_i$$
 — mean of Poisson distributed $N_{\mu,i}$

=> used to generate DAMA mock data

- two studies suggest that phase can potentially in agreement
 - 2. Blum, 2011: nice observation that *direct* hits by muons induce produce too large spread in signal, BUT

$$s_i = \frac{y N_{\mu,i}}{M \Delta E \epsilon_i t_i}$$

$$\langle N_{\mu,i} \rangle = A_{\text{eff}} I_{\mu,i} \epsilon_i t_i$$

=> used to generate DAMA mock data

=> redo Blum's analysis:

(one representative out of a sample of 10k)

since period floats in fit => t_0 looses its absolute meaning!

lessons learned

- 1. distribution in t_0 depends on time origin
 - => frequentist fits to mock-data do not define a good test statistic
- 2. we need better ways to quantify agreement/disagreement of DAMA with the Muon hypothesis
 - => preferentially without reliance on sinusoidal function
 - => look at the correlation coefficient $r \in [-1, 1]$

$$r_{XY} = \frac{\sum_{i} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i} (X_i - \bar{X})^2} \sqrt{\sum_{i} (Y_i - \bar{Y})^2}}$$

correlation study

correlation r(muon,mock=DAMA)

r(muon,mock)

Q: how significant is the difference between these two?

correlation study

correlation r(muon,mock=DAMA)

Model excluded $\gtrsim 99\% \, \mathrm{C.L.}$

\C%GeNT

20 — 7 GeV/c², 1E-4 pb — 0.8

20 — 7 GeV/c², 1E-4 pb — 0.8

20 — 12 GeV/c², 2E-5 pb — 0.6

20 — 12 GeV/c², 3E-4 pb — 0.6

21 — 12 GeV/c², 3E-4 pb — 0.6

22 — 13 GeV/c², 3E-4 pb — 0.6

23 — 14 — 15 GeV/c², 3E-4 pb — 0.6

24 — 15 GeV/c², 3E-4 pb — 0.6

25 — 15 GeV/c², 3E-4 pb — 0.6

26 — 15 GeV/c², 3E-4 pb — 0.6

27 — 12 GeV/c², 3E-4 pb — 0.6

28 — 12 GeV/c², 3E-4 pb — 0.6

29 — 12 GeV/c², 3E-4 pb — 0.6

20 — 12 GeV/c², 3E-4 pb — 0.6

20 — 12 GeV/c², 3E-5 pb — 0.6

20 — 12 GeV/c², 3E-4 pb — 0.6

20 — 12 GeV/c², 3E-5 pb — 0.6

20 — 12 GeV/c², 3E-6 pb — 0.

- 442 kg live-days
- Ge-target, ionization
- potential exponential rise toward low energies
- cosmogenic peaks
- modulation too

[Aalseth et al, 2011]

\C%GeNT

 muon measurements at CoGeNT site (Soudan Mine, MN) from MINOS experiment exist---but only for earlier time period

[Adamson et al, 2010]

 muon measurements at CoGeNT site (Soudan Mine, MN) from MINOS experiment exist---but only for earlier time period

=> use available climate data to predict muon flux!

[Adamson et al, 2010]

\C%GeNT

VS.

correlation study

no correlation with high significance!

=> CoGeNT's modulation not muon-induced

$$\frac{dR(t)}{dE_R} \propto \int_{v_{min}}^{\infty} \frac{f(v)}{v} dv \simeq c_0(v_{min}) + c_1(v_{min}) \cos\left[\omega(t - t_0)\right]$$

$$v_{min} = \frac{1}{\sqrt{2m_N E_R}} \left(\frac{m_N E_R}{\mu_{N\chi}} + \delta \right)$$

[using f(v) from Lisanti et al, 2010]

$$\frac{dR(t)}{dE_R} \propto \int_{v_{min}}^{\infty} \frac{f(v)}{v} dv = \sum_{n=0,1,\dots} c_n(v_{min}) \cos\left[n\omega(t-t_n)\right]$$

$$v_{min} = \frac{1}{\sqrt{2m_N E_R}} \left(\frac{m_N E_R}{\mu_{N\chi}} + \delta \right)$$

- biannual mode
- triannual mode

• ...

[using f(v) from Lisanti et al, 2010]

- can be thought of as an expansion in V_{\oplus}/v_{\odot}
- once ellipticity of earth's orbit is included
 - => phase shifts between different harmonics
 - => new signature
- detection is likely to require large exposure

-50

0

100

200

300

400

 $v_{
m min}\,({
m km/s})$

500

600

k = 1.5

700

800

- can be thought of as an expansion in V_{\oplus}/v_{\odot}
- once ellipticity of earth's orbit is included
 - => phase shifts between different harmonics
 - => new signature
- detection is likely to require large exposure

DAMA/LIBRA:

$$P_{\rm obs}({\rm biann}) = 0.57$$

$$P_{\rm obs}({\rm triann}) = 1.8$$

conclusions

- cosmic muons as origin for DAMA modulation strongly disfavoured
 - different in phase
 - different in correlation
 - possibly different in power
 - possibly different in amplitude
- similar conclusions hold for CoGeNT modulation
- higher harmonics in the modulation signal may provide additional handles in discriminating signal from background