Studying Neutrino Directionality with Double Chooz

Erica Caden

Drexel University

Detecting Neutrinos with Double Chooz

- Reactor neutrinos are detected through Inverse Beta Decay, in which the positron gets the kinetic energy and the neutron gets the momentum of the incoming neutrino.
- At reactor energies, neutron thermalization is a non isotropic process in which the neutron's initial direction is preserved.
- With each scatter, the average cosine with respect to the incoming direction is: $\langle \cos \theta_n \rangle = \frac{2}{3A}$
- Our two part coincidence signal lets us study neutrino directionality.

Principle of Neutrino Direction Reconstruction

• We define \vec{p} as the average of the positron-neutron vector

$$\vec{X}_{e-n}^i = \vec{X}_n^i - \vec{X}_e^i$$

where \vec{X}_n^i and \vec{X}_e^i are the reconstructed vertices of the n and e^+ of event i.

$$\vec{p} = \frac{1}{N} \sum_{i=1}^{N} \vec{X}_{e-n}^{i}$$

• $Cos(\theta)$ between \vec{p} and a vector that points from the reactor to the detector, \vec{X}_{RD} , should tend more towards +1 than -1.

Directionality in CHOOZ

CHOOZ was the first non-segmented scintillator detector to measure reactor neutrino directionality. With \sim 2500 events, they located the reactors within an 18° cone.

	$ \vec{p} $	ϕ	θ	Uncertainty
Data	0.055	-70°	103°	18°
MC	0.052	-56°	100°	19°

{PRD.61.012001}

Directionality with DO

Neutrino Candidates

- Double Chooz has a different detector design than CHOOZ, and therefore different neutrino selection cuts.
- Position reconstruction isn't used in the DC analysis, just as a cross check that our events are where we expect them to be.

Double Chooz Preliminary Results

- Directionality analysis will employ cuts on positron & neutron position and the separation between the two events that are not needed for a θ_{13} analysis.
- The systematic effects of these cuts are currently being studied and their uncertainties will be analyzed and propogated into the final fit.
- Preliminary results will be forthcoming!

Thank You!

