

b-tagging calibration using $t\bar{t}$ events with the ATLAS experiment

Agnieszka Leyko on behalf of the ATLAS collaboration

University of Bonn

Rencontres de Moriond EW, 03-10 March 2012

b-tagging

- b-quark hadronizes to a B-hadron, which lifetime is long enough for us to be able to reconstruct the secondary vertex
- Algorithms allowing to recognize a jet originating from a b-quark:
 - secondary vertex based
 - impact parameter based
 - combination of above, often using neural networks
- Performance of b-tagging crucial for new physics searches

rejection rate is a ratio of all jets to jets that were tagged (inverse of efficiency)

calibration with jets containing muons

- performed on a QCD multijet sample
- only ~20% b-jets contain a muon
- 2 methods (statistically correlated):

pTrel:

 $p_{\text{T}}{}^{\text{rel}}$ templates to extract the b/c/light jet yields in the pre-tagged and tagged sample

<u>system8</u>:

two samples with different b-purity, applying a soft muon tagger and the tagger under test. Solves a system of equations for b and non-b jets efficiencies and fractions

tag 1

tag 2

calibration with jets containing muons results with 2010 data

results for SV0 tagger 50% efficiency working point

tagging efficiency in data for pTrel and system8

- data-simulation scaling factors consistent with 1
- total syst. uncertainty 5-25% depending on tagger and jet p_T, mostly:
 - modeling of heavy flavour production, decays and fragmentation
 - jet energy scale and resolution
 - pileup modeling
- rely on low p_T jet triggers (statistical limitations)
- upper limit on the jet p_T

calibration with $t\bar{t}$ events

- LHC is a top factory
- top decays ~100% to Wb
- \Rightarrow at least 2 b-jets in event
 - clear event signature:
 - **dilepton channel:** 2 leptons + 2 jets + E_T^{miss}
 - single lepton channel: 1 lepton + 4 jets + E_T^{miss}
- in 5 fb⁻¹ ~0.5 million dilepton and single lepton events **tag counting:**
 - fitting number of tagged jets **kinematic selection:**
- calculating the tagging rate of jets in events passing "standard" $t\bar{t}$ selection criteria

most of the $t\overline{t}$ methods are not statistically correlated!

calibration with $t\bar{t}$ events results & future plans

Current results:

- first ATLAS results with 2010 data
- data-MC scaling factors higher than for the baseline methods, but within uncertainties

Future plans:

6

1.6 'n 1.5 Update with 2011 data ready very soon 1.4 for both kinds of calibrations methods 1.3 combination of results planned will allow to significantly reduce 1.1 • uncertainty (b-tagging uncertainty is a dominant uncertaint for most of analyses) 0.9 0.8 ttbar tag count I+jets ttbar tag count ll 0.7 ttbar kinematic I+jets 0.6

40 00 400 000 000

Summary:

- very promising methods
 - large statistics
 - reach high p_T jets

THANK YOU!

7