Results on CP Violation in B_s Mixing
[measurements of ϕ_s and $\Delta\Gamma_s$]

Presentation on behalf of LHCb Collaboration
Rencontres de Moriond, La Thuile, 3-10 March 2012
This talk presents new LHCb results since 2011 summer conferences

- Using the full 1 fb$^{-1}$ of data from 2011 (was 0.37 fb$^{-1}$)

- CPV phase ϕ_s, $\Delta\Gamma_s$ and other quantities from $B_s \rightarrow J/\psi \Phi$
 - LHCb-CONF-2012-002
 - arXiv:1112.3183v2 to be published in PRL

- ϕ_s from $B_s \rightarrow J/\psi \pi\pi$
 - LHCb-PAPER-2012-006 to be submitted to PLB

- Resolution of the “two fold ambiguity” for ϕ_s & $\Delta\Gamma_s$
 - arXiv:1202.4717v2 submitted to PRL
These new results are due to

- Excellent running of detector
- Excellent running of LHC
- Efforts of all the people
LHCb is a forward spectrometer

2 < \eta < 5

Optimised for \(b \) and \(c \) physics

Precise tracking and decay vertex finder

Good particle ID
Experimental phenomenology of CP Violating phase ϕ_s
Measure relative phase difference $\phi_s = \phi_M - 2\phi_D$ between two “legs”.

In SM & normal conventions & ignoring penguins

- $\phi_D \sim 0$
- $\phi_s^{SM} \sim \phi_M$

- is predominantly determined by $\arg(V_{ts})$
- is predicted to be small ~ -0.04

New Physics (NP) can add large phases:

$\phi_s = \phi_s^{SM} + \phi_s^{NP}$

1] The term ϕ_s is overloaded. It is also used for $\arg(M_{12}/\Gamma_{12})$
2] $\phi_s = -2 \arg(V_{ts} V_{tb}^* / V_{cs} V_{cb}^*)$
The signals

- $B_s \to J/\psi \Phi$ and $B_s \to J/\psi \pi \pi$ are very clean decays

$$B_s^0 \left\{ \begin{array}{c}
 b \\
 \bar{s}
\end{array} \right\} \to J/\psi \phi \mu^+ \mu^- \pi^+ \pi^-$$
Straightforward differential decay rates for $B_s \rightarrow J/\psi \pi\pi$

$$
\Gamma (B_s^0 \rightarrow J/\psi f_0) = N_f e^{-\Gamma_{st}} \left\{ e^{\Delta \Gamma_{st}/2} (1 + \cos \phi_s) + e^{-\Delta \Gamma_{st}/2} (1 - \cos \phi_s) \\
- \sin(\phi_s) \sin(\Delta m_s t) \right\},
$$

$$
\Gamma (B_s^0 \rightarrow J/\psi f_0) = N_f e^{-\Gamma_{st}} \left\{ e^{\Delta \Gamma_{st}/2} (1 + \cos \phi_s) + e^{-\Delta \Gamma_{st}/2} (1 - \cos \phi_s) + \sin(\phi_s) \sin(\Delta m_s t) \right\}.
$$

- Signal is sinusoidal time distribution
 - Amplitude proportional to $\sin(\phi_s)$
 - Opposite sign for B and \bar{B} → must tag
 - Diluted by wrong tagging probability ω_{tag}
 - Diluted by detector resolution σ_t

- Fundamentally we measure:
 $$\sin(\phi_s) \times D(\sigma_t) \times (1 - 2\omega_{\text{tag}}) \times \sin(\Delta m_s t)$$
Decay time resolution

\[\sin(\phi_s) \times D(\sigma_i) \times (1 - 2\omega_{\text{tag}}) \times \sin(\Delta m_s t) \]

Need good proper time resolution w.r.t. sinusoid period ~ 350fs

- We measure from data using prompt J/ψ which decay at t=0
- width ~ 45fs
- In analysis we actually use a resolution estimated per-event

Measured decay time of prompt events [ps]
Need to tag B or \bar{B} at production

$$\sin(\phi_s) \times D(\sigma_i) \times (1 - 2\omega_{tag}) \times \sin(\Delta m_s t)$$

Same side
- proton
- primary vertex
- signal B_s
- K^+
- K^-

Opposite side
- proton
- opposite B
- vertex-charge tagger from inclusive vertexing
- negative lepton taggers (e^-, μ^-) from b-quark
- positive leptons from $b \rightarrow c \rightarrow l$ cascade
- opposite kaon tagger (K^-)

LHCb preliminary

Event-mistag (ω_{tag})

Data Points
- Mean = 0.39090
- RMS = 0.07333
- Events / 0.006

Formulae
- Tagging efficiency $\varepsilon_{tag} \sim 33\%$
- Effective mistag $\omega_{tag} \sim 36.8\%$
- Effective tagging power $\varepsilon_{tag}(1 - 2\omega_{tag})^2 \sim 2.3\%$
Measurements of ϕ_s using $B_s \rightarrow J/\psi\pi\pi$

$\sim 1.0 \text{ fb}^{-1}$

This update: LHCb-PAPER-2012-006
Previous analysis was $B_s \to J/\psi f_0(980)$

All $m(\pi\pi)$ range found to be CP-odd
(97.7\% @ 95\% C.L)
[LHCb-PAPER-2012-005]

Now use wider $M(\pi\pi)$ range hence: $B_s \to J/\psi \pi\pi\pi$
Bs → J/ψ ππ π signal

- Boosted Decision Tree selection
- Maximum likelihood fit to time and mass
- Uses Γs and ΔΓs from the Bs → J/ψΦ analysis (+correlation)
- Approx. 7400 signal events

The decay time asymmetry
B_s \rightarrow J/\psi \pi \pi \text{ final result}

\[\phi_s = -0.02 \pm 0.17 \text{(stat.)} \pm 0.02 \text{(syst.)} \text{ rad.} \]

<table>
<thead>
<tr>
<th>Quantity (Q)</th>
<th>±ΔQ</th>
<th>+Change in (\phi_s) (rad)</th>
<th>−Change in (\phi_s) (rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta)</td>
<td>4.4 \times 10^{-3}</td>
<td>0.0008</td>
<td>−0.0007</td>
</tr>
<tr>
<td>(\tau_{bkg1}) (ps)</td>
<td>0.046</td>
<td>−0.0006</td>
<td>0.0014</td>
</tr>
<tr>
<td>(\tau_{bkg2}) (ps)</td>
<td>0.8</td>
<td>−0.0014</td>
<td>0.0014</td>
</tr>
<tr>
<td>(f_2)</td>
<td>0.02</td>
<td>−0.0006</td>
<td>0.0012</td>
</tr>
<tr>
<td>(N_{bkg})</td>
<td>38</td>
<td>0.0009</td>
<td>−0.0001</td>
</tr>
<tr>
<td>(N_{\eta'})</td>
<td>9</td>
<td>0.0006</td>
<td>0.0001</td>
</tr>
<tr>
<td>(N_{sig})</td>
<td>105</td>
<td>0.0021</td>
<td>0.0006</td>
</tr>
<tr>
<td>(m_0) (MeV)</td>
<td>0.12</td>
<td>0.0012</td>
<td>−0.0004</td>
</tr>
<tr>
<td>(\sigma_1^m) (MeV)</td>
<td>0.1</td>
<td>−0.0002</td>
<td>0.0008</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>1.1 \times 10^{-4}</td>
<td>0.0003</td>
<td>0.0003</td>
</tr>
<tr>
<td>(T) function 5%</td>
<td>0.0005</td>
<td>0.0005</td>
<td>0.0005</td>
</tr>
<tr>
<td>(CP)-even</td>
<td>increase mistag by 2.3%</td>
<td>−0.0160</td>
<td>0</td>
</tr>
<tr>
<td>Direct (CP)</td>
<td>free in fit</td>
<td>−0.0020</td>
<td>0</td>
</tr>
</tbody>
</table>

Total systematic error on \(\phi_s \) \(^{-0.017}_{+0.004} \)
Measurements of ϕ_s using $B_s \to J/\psi\Phi$

$\sim 1.0 \text{ fb}^{-1}$

0.37 fb$^{-1}$ published result: arXiv:1112.3183 [LHCb-PAPER-2011-021]

This update: LHCb-CONF-2012-002
Decay to CP-odd and CP-even final states, need analysis of decay angle distribution

- Many larger branching fraction
 \[\frac{J/\psi \Phi}{J/\psi \pi\pi} \approx 5 \]

- Differential cross section is “very rich”
 - 3 “P-wave” amplitudes of KK system
 - 1 “S”-wave amplitude
 - 10 terms with all interferences
..but fundamentally for ϕ_s we still measure:

$$\sin(\phi_s) \times D(\sigma) \times (1 - 2\omega_{tag}) \times \sin(\Delta m_s t)$$

..and because we separate the terms, we measure the lifetimes of Heavy and Light eigenstates separately:

$$\Gamma_L \ & \ \Gamma_H \ \Leftrightarrow \ \Gamma_s \ & \ \Delta\Gamma_s$$

There is a two fold ambiguity in the solutions

$$\phi_s \ \Leftrightarrow \ \pi - \phi_s$$

$$\Delta\Gamma_s \ \Leftrightarrow \ -\Delta\Gamma_s$$

+ strong phase changes
- Simple selection with kinematic cuts
- Most background removed by decay time cut $t > 0.3$ ps
- Very clean signal
- Approx. 21200 signal events
The CP-even / CP-odd separation is very clear in all distributions.
Digression: measurement of Δm_s

- The data has sinusoidal terms which measure Δm_s independently of ϕ_s

- We observe a central value $\Delta m_s = 17.50 \pm 0.15$ (stat) ps$^{-1}$
 - Compare to LHCb published measurement $17.63 \pm 0.11 \pm 0.02$ arXiv:1112.4311
 - This gives confidence that if there is a $\sin(\phi_s) \times \sin(\Delta m_s t)$ term we would see it.
B_s \to J/\psi \Phi : New Preliminary Results

- Maximum likelihood fit to signal + background time, angle and mass distributions.
- Constrain Δm_s to 17.63 ± 0.11 ps
- “Solution-I” shown here
- ϕ_s uncorrelated with other quantities

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ_s [ps$^{-1}$]</td>
<td>0.6580</td>
<td>0.0054</td>
<td>0.0066</td>
</tr>
<tr>
<td>$\Delta \Gamma_s$ [ps$^{-1}$]</td>
<td>0.116</td>
<td>0.018</td>
<td>0.006</td>
</tr>
<tr>
<td>$</td>
<td>A_\perp(0)</td>
<td>^2$</td>
<td>0.246</td>
</tr>
<tr>
<td>$</td>
<td>A_0(0)</td>
<td>^2$</td>
<td>0.523</td>
</tr>
<tr>
<td>F_s</td>
<td>0.022</td>
<td>0.012</td>
<td>0.007</td>
</tr>
<tr>
<td>δ_\perp [rad]</td>
<td>2.90</td>
<td>0.36</td>
<td>0.07</td>
</tr>
<tr>
<td>δ_\parallel [rad]</td>
<td>[2.81, 3.47]</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>δ_s [rad]</td>
<td>2.90</td>
<td>0.36</td>
<td>0.08</td>
</tr>
<tr>
<td>ϕ_s [rad]</td>
<td>-0.001</td>
<td>0.101</td>
<td>0.027</td>
</tr>
</tbody>
</table>

| | Γ_s | $\Delta \Gamma_s$ | $|A_\perp|^2$ | $|A_0|^2$ | ϕ_s |
|----------|------------|-------------------|--------------|-----------|---------|
| Γ_s | 1.00 | -0.38 | 0.39 | 0.20 | -0.01 |
| $\Delta \Gamma_s$ | 1.00 | -0.67 | 1.00 | 0.63 | -0.01 |
| $|A_\perp(0)|^2$ | 1.00 | -0.53 | 1.00 | -0.53 | -0.01 |
| $|A_0(0)|^2$ | 1.00 | | 1.00 | 1.00 | -0.02 |
| ϕ_s | | | | | 1.00 |

21
$B_s \rightarrow J/\psi \Phi$: New Preliminary Results 1.0 fb$^{-1}$

$\Gamma_s = 0.6580 \pm 0.0054$(stat.) ± 0.0066(syst.) ps$^{-1}$

$\Delta \Gamma_s = 0.116 \pm 0.018$(stat.) ± 0.006(syst.) ps$^{-1}$

$\phi_s = -0.001 \pm 0.101$(stat.) ± 0.027(syst.) rad
Systematics

<table>
<thead>
<tr>
<th>Source</th>
<th>Γ_s [ps$^{-1}$]</th>
<th>$\Delta\Gamma_s$ [ps$^{-1}$]</th>
<th>A_{\perp}^2</th>
<th>A_{0}^2</th>
<th>F_S</th>
<th>δ_{\parallel} [rad]</th>
<th>δ_{\perp} [rad]</th>
<th>δ_s [rad]</th>
<th>ϕ_s [rad]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of background</td>
<td>0.0010</td>
<td>0.004</td>
<td>-</td>
<td>0.002</td>
<td>0.005</td>
<td>0.04</td>
<td>0.04</td>
<td>0.06</td>
<td>0.011</td>
</tr>
<tr>
<td>Angular acceptances</td>
<td>0.0018</td>
<td>0.002</td>
<td>0.012</td>
<td>0.024</td>
<td>0.005</td>
<td>0.12</td>
<td>0.06</td>
<td>0.05</td>
<td>0.012</td>
</tr>
<tr>
<td>t acceptance model</td>
<td>0.0062</td>
<td>0.002</td>
<td>0.001</td>
<td>0.001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>z and momentum scale</td>
<td>0.0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Production asymmetry (\pm 10%)</td>
<td>0.0002</td>
<td>0.002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.008</td>
</tr>
<tr>
<td>CPV mixing & decay (\pm 5%)</td>
<td>0.0003</td>
<td>0.002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.020</td>
</tr>
<tr>
<td>Fit bias</td>
<td>-</td>
<td>0.001</td>
<td>0.003</td>
<td>-</td>
<td>0.001</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.005</td>
</tr>
<tr>
<td>Quadratic sum</td>
<td>0.0066</td>
<td>0.006</td>
<td>0.013</td>
<td>0.024</td>
<td>0.007</td>
<td>0.13</td>
<td>0.07</td>
<td>0.08</td>
<td>0.027</td>
</tr>
</tbody>
</table>

- **Note:** Tagging and resolution parameters floated in fit within uncertainties, hence not explicitly included in systematics
$B_s \rightarrow J/\psi \Phi$ and $B_s \rightarrow J/\psi \pi \pi$ combined prelim. result

- Used a simultaneous fit to both datasets, taking all common parameters and correlations into account.
- Used largest syst. error.

$$\phi_s = -0.002 \pm 0.083{\text{(stat.)}} \pm 0.027{\text{(syst.)}} \text{ rad}$$
Resolving the ambiguous solution

The sign of $\Delta \Gamma_s$

$\sim 0.37 \, \text{fb}^{-1}$

There are two ambiguous solutions related by $\phi_s \Leftrightarrow \pi - \phi_s$ and $\Delta \Gamma \Leftrightarrow -\Delta \Gamma$

We can disambiguate using the P-Wave \Leftrightarrow S-Wave interference

Similar to Babar measurement of sign of $\cos(2\beta)$, PRD 71, 032005 (2007)

K$^+$K$^-$ P-wave:
Phase of Breit-Wigner amplitude increases rapidly across $\phi(1020)$ mass region

$$BW(m_{KK}) = \frac{F_r F_D}{m_\phi^2 - m_{KK}^2 - im_\phi \Gamma(m_{KK})}$$

K$^+$K$^-$ S-wave:
Phase of Flatté amplitude for $f_0(980)$ relatively flat (similar for non-resonance)

Phase difference between S- and P-wave amplitudes
Decreases rapidly across $\phi(1020)$ mass region

Resolution method: choose the solution with decreasing trend of δ_s - δ_P vs m_{KK} in the $\phi(1020)$ mass region
- Split data into 4 bins of m_{KK}.
- In each bin measure
 - Fraction of S-wave
 - Measure relative strong phase difference $\delta_S - \delta_{\perp}$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Solution I</th>
<th>Solution II</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_s (rad)</td>
<td>0.167 ± 0.175</td>
<td>2.975 ± 0.175</td>
</tr>
<tr>
<td>$\Delta\Gamma$ (ps$^{-1}$)</td>
<td>0.120 ± 0.028</td>
<td>-0.120 ± 0.028</td>
</tr>
<tr>
<td>$F_{S;1}$</td>
<td>0.283 ± 0.113</td>
<td>0.283 ± 0.113</td>
</tr>
<tr>
<td>$F_{S;2}$</td>
<td>0.061 ± 0.022</td>
<td>0.061 ± 0.022</td>
</tr>
<tr>
<td>$F_{S;3}$</td>
<td>0.044 ± 0.022</td>
<td>0.044 ± 0.022</td>
</tr>
<tr>
<td>$F_{S;4}$</td>
<td>0.269 ± 0.067</td>
<td>0.269 ± 0.067</td>
</tr>
<tr>
<td>$\delta_{S\perp;1}$ (rad)</td>
<td>$-0.46^{+0.35}_{-0.42}$</td>
<td>$-2.68^{+0.42}_{-0.35}$</td>
</tr>
<tr>
<td>$\delta_{S\perp;2}$ (rad)</td>
<td>$-2.92^{+0.15}_{-0.13}$</td>
<td>$-0.22^{+0.15}_{-0.13}$</td>
</tr>
<tr>
<td>$\delta_{S\perp;3}$ (rad)</td>
<td>$-3.25^{+0.18}_{-0.16}$</td>
<td>$0.11^{+0.18}_{-0.16}$</td>
</tr>
<tr>
<td>$\delta_{S\perp;4}$ (rad)</td>
<td>$-4.11^{+0.28}_{-0.43}$</td>
<td>$0.97^{+0.43}_{-0.28}$</td>
</tr>
</tbody>
</table>

Solution-I is selected [4.7σ from being flat]
$\Delta\Gamma_s > 0$
LHC + Tevatron Results

This result 1 fb$^{-1}$

D0 8 fb$^{-1}$ [S. Burdin, EPS 2011]

CDF 10 fb$^{-1}$ [Sabato Leo talk, Lake Louise]
LHCb has presented new preliminary results using the full 2011 data (1 fb⁻¹).

From an analysis of the J/ψφ channel we find:

\[\Gamma_s = 0.6580 \pm 0.0054\text{(stat.)} \pm 0.0066\text{(syst.)} \text{ ps}^{-1} \]
\[\Delta \Gamma_s = 0.116 \pm 0.018\text{(stat.)} \pm 0.006\text{(syst.)} \text{ ps}^{-1} \]
\[\phi_s = -0.001 \pm 0.101\text{(stat.)} \pm 0.027\text{(syst.)} \text{ rad.} \]

From an analysis of the J/ψππ channel we find:

\[\phi_s = -0.02 \pm 0.17\text{(stat.)} \pm 0.02\text{(syst.)} \text{ rad} \]

Combining both results we find:

\[\phi_s = -0.002 \pm 0.083\text{(stat.)} \pm 0.027\text{(syst.)} \text{ rad.} \]

We resolve the 2-fold ambiguity and find: \(\Delta \Gamma_s > 0 \)
Extra Information
1. CP-odd fraction: Table from LHCb-PAPER-2012-006

Table 1: Fit fractions of contributing resonances [16]. The final state helicity of the D-wave is denoted by \(\Lambda \). Only statistical errors are quoted.

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Normalized fraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_0(980))</td>
<td>69.7 ± 2.3</td>
</tr>
<tr>
<td>(f_0(1370))</td>
<td>21.2 ± 2.7</td>
</tr>
<tr>
<td>non-resonant (\pi^+\pi^-)</td>
<td>8.4 ± 1.5</td>
</tr>
<tr>
<td>(f_2(1270), \Lambda = 0)</td>
<td>0.49 ± 0.16</td>
</tr>
<tr>
<td>(f_2(1270), \Lambda =</td>
<td>1</td>
</tr>
</tbody>
</table>

- Upper limit on \(\rho(770) \) found to be 1.5% @ 95% C.L.
- Total is quadrature sum of \(f_2(1270) + \rho(770) \)

2. Profile Likelihood

![Figure 8](image)

Figure 8: Log-likelihood difference as a function of \(\phi_s \) for \(\overline{B}_s \rightarrow J/\psi f_{\text{odd}} \) events.
B_s \rightarrow J/\psi \Phi

Decay angle acceptances

\begin{align*}
\epsilon(\cos \theta) & \sim 5\% \text{ effects} \\
\epsilon(\psi) & \sim 5\% \text{ effects} \\
\epsilon(\cos \psi) & \sim 5\% \text{ effects}
\end{align*}

Accounted for in ML fit
This new preliminary result 1.0 fb⁻¹

\[\Gamma_s = 0.6580 \pm 0.0054\text{(stat.)} \pm 0.0066\text{(syst.)} \text{ ps}^{-1} \]
\[\Delta \Gamma_s = 0.116 \pm 0.018\text{(stat.)} \pm 0.006\text{(syst.)} \text{ ps}^{-1} \]
\[\phi_s = -0.001 \pm 0.101\text{(stat.)} \pm 0.027\text{(syst.)} \text{ rad.} \]

Previous published result 0.37 fb⁻¹

arXiv:1112.3183

\[\Gamma_s = 0.657 \pm 0.009\text{(stat.)} \pm 0.008\text{(syst.)} \text{ ps}^{-1} \]
\[\Delta \Gamma_s = 0.123 \pm 0.029\text{(stat.)} \pm 0.011\text{(syst.)} \text{ ps}^{-1} \]
\[\phi_s = 0.151 \pm 0.18\text{(stat.)} \pm 0.06\text{(syst.)} \text{ rad.} \]
Syst error due to possible direct CVP

- We vary $|\lambda|^2$ by 5%
- Motivated by a fit for $|\lambda|^2$ gives < 5%

$$R(t, q) \propto e^{-\Gamma_s t} \left\{ \cosh \frac{\Delta\Gamma_s t}{2} + \frac{2|\lambda|}{1 + |\lambda|^2} \cos \phi_s \sinh \frac{\Delta\Gamma_s t}{2} \right.$$

$$\left. - \frac{2qD}{1 + |\lambda|^2} \left[|\lambda| \sin \phi_s \sin(\Delta m_s t) + (1 - |\lambda|^2) \cos(\Delta m_s t) \right] \right\}.$$