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Why exotica??

This ts what the average theorist will Look Like a
year from now, Lf only the SM Higogs will be
discovered..




Why exotica??

Nothing very exciting (beyond the
SM) at the LHC

Standard scenarios feel the
tenston

Theoretical prejudice s dangerous!




Long Lived Particles —

e Many examples:
e GMSB

AMSB

Split SUSY
e RPV

e Hidden Sectors

e Several existing searches at the LHC:

o ATLAS: Charged long-lived heavy particles (https:/atlas.web.cern.ch/Atlas/GROUPS/PHYSI NFNOTES/ATLAS-CONF-2012-022/)
o ATLAS: AMSB [awiv: 1202.4847]

o ATLAS: Stopped Gluinos (arxiv: 1201.5595]

o CMS: GMSB (nttps:/twiki.cem.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO11067)

e CMS: Higgs to displaced leptons (attps:/twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEX011004)




Hidden Valleys:

Decays in the Muon Spectrometer




A Hidden Sector

e Could be a weakly or strongly coupled version of “Hidden Valleys”. [Strassler, Zurek, 2006]

e Simple and plausible extension of the SM.
e Mixing can be naturally generated at high scale, €103,

e Phenomenology vary with hidden sector structure, which we know nothing about!




A Hidden Seceor
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Production of Hidden Se_

e Production may occur in various ways, €.g.:

e In supersymmetric models, NLSP will decay to hidden sector.

ng ng
S hy Yd

e Scalar particles may couple to visible and hidden sector.

Weinglet = S (Y x X + A HuHg) + k1 X h2 + Ko x h3.

e [Let’s consider the case where the Higgs or some other scalar field decays to the hidden

sector. ,
[Falkowski, Ruderman, TV, Zupan, 2010]




Production of Hidder
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[Falkowski, Ruderman, TV, Zupan, 2010]

e Instead of a Higgs this can be a singlet scalar, Z’, etc




Higgs decays...




Into the Hidden Sector...




Hidden cascade...




Back to the SM...




Back to the SM...




o LEP-2

e [.3: H— LJs (Princeton?)

e ALEPH: H — LJs (RECAST)
e Tevatron

e DO: SUSY — LJs (Rutgers and SLAC)

e CDF: H — LJs (Chicago, see Azeddine’s talk)
e LHC

e CMS: H — displaced LJs (Princeton)

e ATLAS: H — displaced LJs (Seattle/Rome)

CMS: SUSY — muonic LJs (Princeton, Texas A&M)

CMS: SUSY — LJs (Rutgers)

e ATLAS: H — LJs (Ljubljana)
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Hidden Valley Iriggers

e [Late decays would not be picked up with standard triggers.

e Three dedicated triggers were designed.
l. MUON ROl CLUSTER TRIGGER

Developed for decays in the MS.

L2 requires: - 3 muon Rol’s in AR<0.4
- No calorimeter jets with Er>30 GeV and AR<(.7

- No ID tracks with pr>5 GeV and AnxA¢p=0.2x0.2

Typical decays: Little energy in calorimeter

O




Hidden Valley Iriggers —

e [Late decays would not be picked up with standard triggers.
e Three dedicated triggers were designed.

l. MUON ROl CLUSTER TRIGGER

2. CALORIMETER RATIO TRIGGER

3. TRACKLESS JET + MUON TRIGGER




ATLAS h—LJs Search (p

e Study muon-reach samples.

e Tune lifetime so that 80% of the decays occur inside the detector.
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Higgs mass my,, mrsp yamass (GeV) cT or
(GeV)  (GeV) (GeV) (GeV) (mm) Ju(LSP)
100. 3.0 2.0 0.4 47. —
140. 5.0 2.0 0.4 36. /

S

J.y (LSP)

e Main event selection cuts:

e Pick all muons in MS within an 1solated cone in calorimeter and tracker:

ETiso<5 GeV for 0.2<AR<0.4 and ZXpr<3 GeV for AR<0.4 9
e At least two oppositely charged muons in each LJ

e Require 2 LJs with [Ap[>2




ATLAS h—1Js Search <q

Results coming very soon...




ATLAS h—mam,—>4b Se

e Above I described a weakly coupled hidden sector, with decays to leptons.
e The hidden sector can be strongly coupled instead.

e Hidden pions decay predominantly to b-bar, my—bb".

e Lifetime can easily be large, very similar to the previous case.

e Of course, this complicated strong-coupling story is not important -
in the end we always model our ignorance
with a weakly-coupled Lagrangian and this is L.
what we look for o
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[Strassler and Zurek, 2006]




ATLAS h—mamy—4b S

e Study: my=120 GeV and 140 GeV Y S I I
m;=20 GeV and m=40 GeV S [ amas ol :
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e Specialized tracking and vertex reconstruction
employed in MS. Requires at least 3 tracklets (2)
that point to IP and n|<2.2.
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95% CL Limit: m =120 GeV, m,'=20 GeV
95% CL Limit: m, =120 GeV, m&=40 GeV
95% CL Limit: m, =140 GeV, m&=20 GeV
95% CL Limit: m =140 GeV, m&=40 GeV
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Why Look at the Tra

e It is likely that many of the possible NP models will be discovered even without
dedicated searches.

e Nonetheless, models can be identified and further information can be obtained by
studying decays in the tracker.

e For instance SUSY. In some models one can have late decays, e.g. GMSB
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[Meade, Reece, Shih, 2010]




Why Look at the Tracker? _

e It is likely that many of the possible NP models will be discovered even without
dedicated searches.

e Nonetheless, models can be identified and further information can be obtained by
studying decays in the tracker.

e For instance SUSY. In some models one can have late decays, e.g. GMSB:

5

P %( Mo )5 100 TeV\* 1
167 F? 100 GeV VF 0.1 mm

e Identifying these decays can help pin-pointing on the model.

e It can also provide additional information, for example, by reconstructing a kink, the
gravitino mass may be reconstructed (if heavy enough),

Mlg{econ — mlg + ml2 - 2E[El T 2|]3}~||]5}|COSH;€

and thus allow to distinguish between standard GMSB and one with multiple SUSY-
breakmg sectors. [C. Cheung, Y. Nomura, J. Thaler [arXiv:1002.1967]]
[C. Cheung, J. Mardon, Y. Nomura, J. Thaler [arXiv:1004.4627]]

[Elor, Meade, Papucci, TV, in progress]
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Why Look at the Tracker? _

e There are however, examples for models that will never be discovered without dedicated
searches.

e One example: Hadronically decaying light sbottoms via RPV.
e Production rate is huge.

e If sbottoms decay in tracker, they would produce a poor ¥? and their pr could be
mismeasured.

e While the light sbottom window has been around for a while, I am not aware of a way to
close it at the LHC.

o Ideas?




The XY Model ... 5o

e There are even more exotic models with huge rates that will not be easily discovered.

e Motivation: CDF Anomaly - charged track distribution in MB events.
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The XY MOdel [Papucci, Meade, Tv;

ATLAS and CMS do not see this!

Difference between CDF and ATLAS/CMS: track quality cuts.

If true, anomaly indicates breakdown of QCD factorization or NP.

Difficulty in NP explanation: pr = M but for M=100 GeV, rate is too low.
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The XY MOdel [Papucci, Meade, TV, 2011] _

e Solution?
e Of course, this measurement is almost certainly wrong.
e But what kind of NP can explain it?
e Whatever it 1s, its momentum must be mismeasured.
e Consider adding a new vector-like particle,
X+X~(3,1),+(31), mx ~ 10 GeV
e When produced, X hadronizes into fractionally charged mesons.
e The pr that will be measured is enhanced:
PTmeasured = PT/ q

e But stable fractionally charged particles are very constrained (e.g. CHAMP searches), so X
must decay inside the tracker:

1 _
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Track pr Differential Cross section
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NOTs - New Odd Tracks

e Irregular tracks can come in many forms.
e In many cases, peculiar properties may lead to a systematic mis-reconstruction of their
tracks by the standard algorithms.

e Consequently, particles of this kind may evade detection.

e Refer to such particles as NOTs and classify signatures: [Meade, Papucci, TV, 20011]
e Kinks.
e Displaced vertices.
e Anomalous dE/dx.

- Anomellos Sing Long Lived Particles

e Intermittent hits.

/

e Anomalous curvature.

N

e Stub Tracks.




NOTs - New Odd Tracks

e Irregular tracks can come in may forms.

e In many cases, peculiar properties may lead to a systematic mis-reconstruction of their

tracks by the standard algorithms.

e Consequently, particles of this kind may evade detection.

e Refer to such particles as NOTs and classify signatures: [Meade, Papucci, TV, 20011]

e Kinks.

e Displaced vertices. Model | "8 | dE/dx | Timing | Curvature | SubTracks | Kinks
GMSB

e Anomalous dE/dx. v v v v
AMSB \/ \/

e Anomalous timing.

RV | V| V|V v’
e Intermittent hits. Quirks v v v
e Anomalous curvature. Gt v~ v~ v’ v’

e Stub Tracks.
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What do we do the morning

@

e [fthe SM Higgs is discovered and nothing else, there will only be a few games left in
town:
e Flavor physics

e Higgs precision measurements

e Exotic searches to ensure we missed nothing!




How to deal with unknown u_

e Stage 1: We think through examples - so come up with as many as we can.
(Often motivated by unsubstantiated rumors and weak anomalies...)

e Stage 2: Figure out triggering.
Very crucial to understand in advance!!

e Stage 3: Experimental searches - keep general.
Better do a signature-based search.
Can be done more systematically.

Very important - work with simplified/pseudo models. When the unknowns are
unknown, constraining one specific model 1s almost meaningless...

e Stage 4: Provide as much information as possible when presenting results so that the
implication for other scenarios can be evaluated.







Hidden Valley Iriggers _

e [Late decays would not be picked up with standard triggers.

e Three dedicated triggers were designed.

l. MUON ROl CLUSTER TRIGGER

2. CALORIMETER RATIO TRIGGER

Developed for decays in the HCAL.

L2 requires: - A Jet with Er > 30 GeV and Logio(Enan/Eem) > 1
- No Inner Detector tracks in AnxA¢<0.2x0.2 around the jet axis

A
4m |
HCAL a l\ Typical decays:
Narrow jets (AR <0.1)
2m |-
ECAL _ < ‘ Little/No Energy in the ECAL
Im - < No related tracks.




Hidden Valley Iriggers —

e [Late decays would not be picked up with standard triggers.
e Three dedicated triggers were designed.

l. MUON ROl CLUSTER TRIGGER

2. CALORIMETER RATIO TRIGGER

3. TRACKLESS JET + MUON TRIGGER

Developed for decays in the tracker.

L2 requires: - A Jet (ET > 30 GeV)
- No tracks (pT > 1 GeV) connecting to the IP

- Muon 1nside of the jet cone







How should we present co

e Consider a search for long lived hidden particles (more details from Dan..)

wop

e Limits can be placed on any given pseudo model with a specific
topology, BRs, lifetime, masses, etc.

e How do we provide more information that can be used to
to constrain other pseudo-models?

e Idea:
Present efficiencies for global and LJ-specific properties, at truth-level.
Try to (partly) disentangle the dependence on the various properties.

e What are the relevant parameters?

e Composition. e MET.
e Number of LJs.

A$(LIs,MET,..)

Isolated leptons (relevant for associated
production)

e pr distributions.

o [ifetime.




Useful plots for long-l

Present efficiencies at truth-level
(significantly more useful for theorists)

Present efficiencies per L]
(provides information on the hidden structure)




Useful plots for longlived SeareneS MR

e Lifetime: €4 €4

T R }\llab,long

)\'Iab,short

More information for models with
several lifetimes and multiple
decays.




Useful plots for long-l

S

e Lifetime: €

": —— }\llab,long

)\'Iab,short

e pr: Can disentangle dependence from lifetime

Plot for each region of the detector: tracker, calorimeter, muon chamber.

81\




Usetul plots for long

Jet Shape
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i QCD Jets
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Usetul plots for long-li_

Jet Shape
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e Composition: 2D tables for efficiencies as function of composition on event-by-event
basis.

e
composition

L composition




Pseudo Models _

e A wide range of parameters can be captured with a small set of pseudo-models.
e Assume N-step cascade.
e Tunable parameters:

e Topology: number of cascade steps (multiplicity and pT).

e Composition: BR’s of last step to SM (composition and MET distribution).

e Masses: Higgs (rate) and hidden mass (number and width of L1J).

e Lifetime. Pﬁ




