Light Stops from Seiberg Duality

Lisa Randall

w/Csaba Csaki
John Terning

General

Moriond Electroweak:

- Higgs
- Flavor
- Neutrinos
- Precision SM
- Stability of SM
 - SUSY, RS, Compositeness,...
- Easy to forget that they are all supposed to be related
- True model should explain everything
- That's why so challenging
- My first Moriond ε'/ε large $m_t->$
- Last one: warped extra d
- Today—SUSY with light stop

Theory

- Explore alternatives
 - Data (what we see and don't see) to give us clues
 - Model-building guides searches
- Ultimately complete and correct model
- Explain
 - Higgs sector
 - Stability of Higgs sector
 - Flavor
 - Quarks
 - Leptons

For example...

- RS:
 - Designed to solve hierarchy
 - But flavor and RS essential
 - And natural
- Bonus: Studies yield general lessons
 - Composite/elementary mixing
 - Anarchy—very general Yukawa coupling
- One test: θ_{13} (w/ Perez) θ_{13} (w/ Perez)
 - General terms:
 - No special relations among angles
 - Generic Yukawa (anarchy)
 - EXPECT not very suppressed mixing angle
 - Important as test of flavor ideas
 - Not just CP violation
- Also have potential to explain A_{CP}

Yet Puzzle and Worry

- RS, SUSY (and most theories explaining hierarchy) want light spectra (~few hundred GeV)
- Experiments—both direct and indirect—point to heavier spectra
- Perhaps we are totally wrong
- Perhaps we are too simplistic

Challenges

- RS-models
 - Explain flavor amazingly well with low scale
 - Few TeV KK modes work due to wavefunction suppression
 - Even so, KK modes heavy
 - Higgs lighter
- Supersymmetry
 - Gluino, squark "heavy"
 - Pushes naturalness
 - Higgs mass
 - Pushes parameters
 - Indirect constraints
 - ***How to reconcile flavor, Higgs sector

What Data is Telling Us

- We need to search more creatively
- OR
- Current models not the answer
- Whether we like it or not,
- Data points to two-scales
- Necessarily more subtle models
- RS needs a bit of tuning or additional ingredient to explain light Higgs
 - PGB models
- SUSY's best implementation might involve split spectrum
- Rest of talk: focus will be supersymmetry
 - Among other things, people seemed surprised not yet found...

Insight: More Minimal Supersymmetric Model

Cohen Kaplan Nelson

- Introduces idea of split spectrum
- Ask what is essential for SUSY to protect hierarchy
- ✓ Simply control radiative corrections
 - Dominant ones involve stop
 - Light: stop, Higgs, gauginos
- ✓ Today: naturalness and constraints perhaps point to split spectrum with stop light others heavy
- Is this reasonable?
- Maybe! Top already distinguished
- Could there be connection between its heavier mass and differences in SUSY spectrum?

Top solves the puzzle?

- Key Observation:
 - Quarks really are different
 - Top much heavier
 - Maybe partners are too?

Compositeness?

- ✓ Potential to explain large top Yukawa and large top quark mass
 - Higgs and top composite
- ✓ Also of course, beautiful explanation of electroweak symmetry breaking
 - Solves hierarchy
 - Can be compositeness Higgs
- ✓ Gives natural additional scale
 - 10-100 TeV
- But
 - Potentially other flavor issues
 - RS has taught us that partial compositeness likely the solution
 - Mix with elementary
 - Alternative: think of large anomalous dimensions

Supersymmetry AND Compositeness?

- Overkill?
- But problems of two types of theories complementary
- Ideas already existing trying to combine ideas
- Seiberg duality AUTOMATICALLY HAS BOTH
 - At least existing examples
- Idea in Seiberg duality:
 - Strongly interacting theory has dual weakly coupled GAUGE description
 - One way to understand emergence of gauge bosons is through supersymmetry protecting gauge group away from Higgs stage

Use lessons from Seiberg duality and RS

- Composite SM interesting idea
- Seiberg duality realizes this possibility
- RS does too
 - More realistic in both cases is partial compositeness
 - Mixture of composite gauge bosons and elementary
 - Allows correct weak coupling
 - Also interesting flavor possibilities
 - In RS gauge bosons in the bulk
 - Also top composite
 - Others elementary
 - Also Higgs partially composite
 - Mixture of elementary and composite
 - Satisfies both Englert conditions

Meanwhile...

- New models of supersymmetric standard model
- Minimal composite model of Csaki, Shirman, and Terning
- Based on Seiberg duality, partial compositeness
- Naturally combines compositeness and supersymmetry
 - Entire model based on both
 - Supersymmetry essential to composite gauge bosons

Ingredients

- Seiberg duality
- Csaki, Shirman, Terning Minimal SUSY Composite Model
- Feed in supersymmetry breaking
 - On elementary side with interesting consequences on dual side
- Yields two-scale spectrum naturally
- Different experimental consequences

Seiberg Duality

- No details here
- Basic idea: strongly interacting theory might have realization in terms of perturbative composite theory
- In certain supersymmetric examples, Seiberg has shown what those theories are
- New gauge groups emerge and old ones disappear
 - Naturally includes both supersymmetry and compositeness
- Of interest to us will be a theory at the border of the conformal window

MCSSM: Minimal Composite Supersymmetric Standard Model

Csaki, Shirman, Terning

	SU(4)	$SU(6)_1$	$SU(6)_2$	$U(1)_V$	$U(1)_R$
Q			1	1	1/3
$\bar{\mathcal{Q}}$		1		-1	$\frac{1}{3}$

Electric Theory

	$SU(2)_{\rm mag}$	$SU(6)_1$	$SU(6)_2$	$U(1)_V$	$U(1)_R$
q			1	2	2/3
$ar{q}$	□	1		-2	$\frac{2}{3}$
M	1			0	$\frac{2}{3}$

Magnetic Theory

$$W=y\bar{q}Mq\ .$$

Superpotential

So Model

- Small flavor symmetry
 - Not much composite—not even full 3rd generation
- Composite:
- Stop_{right}
- Q^3_{left}
- Higgs
 - Composite Higgs mixes with Φ through conjugage field Φ'
- EW gauge bosons
 - In fact partially composite
 - 2 SU(2)xU(1)s broken to one
 - Necessary for weak enough coupling
 - Necessary for elementary quark masses
- Lots of heavy stuff at composite scale

Now With

Supersymmetry Breaking

- ✓ A model that automatically matches data
- ✓ Naturally provides hierarchies
 - Usual hierarchy: light Higgs
 - But Higgs mass not constrained so no MSSM-like naturalness issue even w125 GeV Higgs
 - Naturally accommodates 125 GeV Higgs
 - Little hierachy: compositeness scale but supersymmetry keeps Higgs and others light
 - Hierarchy in flavor: top heavier
 - Hierarchy in SUSY spectrum: stop, gauge bosons and EW partners, Higgs are light
- Keep in mind model already existed
 - Not cooked up to match data

Key Result

- SUSY breaking communicated in very interesting way AUTOMATICALLY
- And leads to several categories of compelling experimental consequences
- For this particular phase,
- Supersymmetry breaking NOT TRANSFERRED TO COMPOSITE FIELDS at leading order
- Natural hierarchy in spectrum
 - Elementary fields big soft masses
 - Composite fields suppressed soft masses
 - NICE coincidence that top should be composite
 - For experts, opposite to what happens in single sector models
 - Supersymmetry transferred MORE to composites

Partial Understanding

(IR contribution symmetry argument not presented here)

- Assume SUSY breaking in electric UV theory
- Intuition from RS: composite IR degrees of freedom are insensitive to SUSY breaking, while elementary degrees of freedom (UV localized) experience SUSY breaking
- Composites get much bigger renormalization group running

$$m_{el}^2(\mu) = m_{UV}^2 \left(\frac{\mu}{\Lambda}\right)^{\mathcal{O}(\alpha)}$$

$$m_{comp}^2(\mu) = m_{IR}^2 + m_{UV}^2 \left(\frac{\mu}{\Lambda}\right)^{\gamma}$$

Well behaved weakly coupled Seiberg dual requires positive anomalous dimension of order one; scales soft mass to zero Remaining IR term has no ready interpretation but can be determined using holomorphy

Resulting Potential

$$W \supset yP(\mathcal{H}\bar{\mathcal{H}} - \mathcal{F}^2) + yS(H_uH_d - f^2) + yQ_3H_u\bar{t} + y\mathcal{H}EX$$

$$V = y^{2}|H_{u}H_{d} - f^{2}|^{2} + y^{2}|S|^{2}(|H_{u}|^{2} + |H_{d}|^{2}) + m_{S}^{2}|S|^{2} + m_{H_{u}}^{2}|H_{u}|^{2} + m_{H_{d}}^{2}|H_{d}|^{2} + (ASH_{u}H_{d} + TS + h.c.) + \frac{g^{2} + g'^{2}}{8}(|H_{u}|^{2} - |H_{d}|^{2})^{2}$$

- Two SU(2)s combine
- EWSB in SUSY limit
- Expect tanβ ~1
 - Good for heavier Higgs through singlet
 - Naturally acccommodates preferred value of ŠŞŜcalar Boson

Soft Masses for Composites: Vanish when 3N=2F

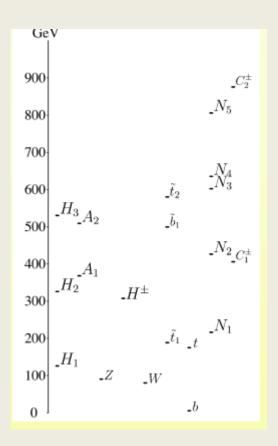
- Soft masses dimensionally suppressed $\mathcal{O}\left(m_{UV}^4/\Lambda^2\right)$
 - Don't run to deep IR
- Also corrections from perturbative SM running that can dominate when Λ large
- Also: $A = \mathcal{O}(\frac{m_{UV}^2}{\Lambda})$
- Gaugino masses for our model mixing with elementary significant
 - Elementary fields, gluino have big susy breaking masses $m_{el} \sim M_3 \sim {
 m few} \cdot {
 m TeV}$
 - Composite fields have small masses

$$m_{comp} \sim \frac{m_{el}^2}{\Lambda} \sim M_1 \sim M_2 \sim A \sim \text{few} \cdot 100 \text{ GeV}$$

SUSY Spectrum

- Elementary matter gets SUSY breaking mass
- Composite matter receives suppressed higher-dimensional or loop contributions
 - Natural hierarchy in the spectrum
 - Exactly what is needed for natural SUSY
- Composite superpartners are lighter
 - Stop, left-handed sbottom, Higgsinos, EW gauginos (in part due to coupling)
- Elementary partners are heavier
 - Squarks, gluino, sleptons, elementary Higgses
- Also NMSSM spectrum
 - Higgs heavy enough without heavy stop
- Perhaps what data and hierarchy point to:
 - few hundred GeV light superpartners still allowed

Key Distinguishing Experimental Features


- More tops, bottoms than usual
- Reduced rates
 - Gluinos, light squarks heavy and not produced
- Possibility of stop NLSP
- Possibility of much less splitting in SUSY partners (when radiative)
- Possibility of stealth stop
 - Near degeneracy of top and stop

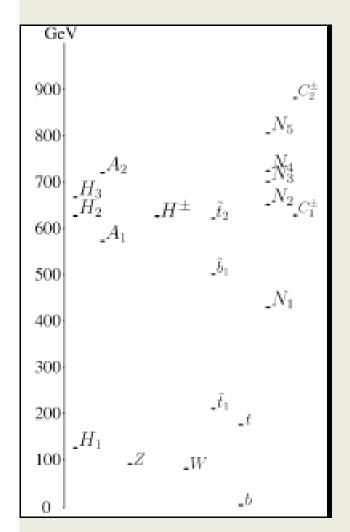
Several Possibilities: we consider four classes

- Stop1 nearly degenerate with top
- Light stop with few hundred GeV splitting and heavier neutralino
- Light neutralino from gauge mediation
- Light neutralino with high compositeness scale (mostly radiative contributions)

parameter	spectrum 1	spectrum 2	spectrum 3	spectrum 4
$\tan \beta$	0.85	1.3	1.0	0.97
A	300 GeV	540 GeV	350 GeV	400 GeV
T	$4 \times 10^7 \text{ GeV}^3$	$1.4 \times 10^7 \; { m GeV^3}$	$3.35 \times 10^7 \; {\rm GeV^3}$	$6 \times 10^6 \text{ GeV}^3$
$m_{Q_{33}}$	500 GeV	500 GeV	350 GeV	400 GeV
$m_{U_{33}}$	250 GeV	350 GeV	350 GeV	400 GeV
M_1	600 GeV	700 GeV	85 GeV	600 GeV
M_2	800 GeV	800 GeV	282 GeV	1200 GeV
m_S	400 GeV	350 GeV	350 GeV	100 GeV
M_{Sf}	0 GeV	-350 GeV	0 GeV	0 GeV
f	$100 \mathrm{GeV}$	100 GeV	293 GeV	100 GeV

Spectrum I: Stealth Stop

H_1	$125~\mathrm{GeV}$	\widetilde{b}_1	499 GeV
\tilde{t}_1	188 GeV	A_2	509 GeV
N_1	216 GeV	H_3	530 GeV
H^{\pm}	307 GeV	$ ilde{t}_2$	580 GeV
H_2	326 GeV	N_3	602 GeV
A_1	368 GeV	N_4	$635~\mathrm{GeV}$
C_1	406 GeV	N_5	805 GeV
N_2	$426~\mathrm{GeV}$	C_2	876 GeV


Light stop, nearly degenerate with top, Light neutralino-not quite as light Sbottom, other stop 500 GeVish Aside from gauginos, all else heavy

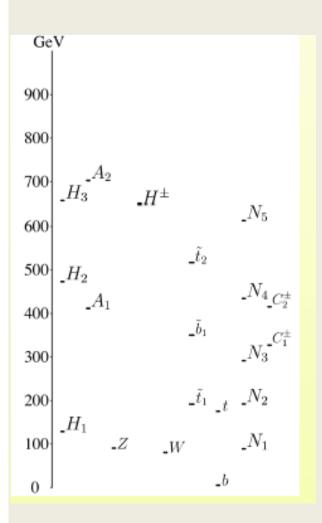
Phenomenology of stealth stop

$$\begin{array}{lll} \tilde{t}_1 & \to t + LSP & 100\% \\ C_1 & \to \tilde{t}_1 + b^{\dagger} & 84\% \\ C_1 & \to N_1 + W^{\pm} & 16\% \\ \tilde{b}_1 & \to \tilde{t}_1 + W^{-} & 97\% \\ \tilde{b}_1 & \to \tilde{t}_1 + H^{-} & 3\% \\ \tilde{t}_2 & \to \tilde{t}_1 + Z & 51\% \\ \tilde{t}_2 & \to t + N_1 & 27\% \\ \tilde{t}_2 & \to b + C_1^{+} & 11\% \\ \tilde{t}_2 & \to \tilde{t}_1 + H_1 & 10\% \end{array}$$

- Apparent change in top cross section 10% (15 pb)
- Sbottom (heavier stop) cross section 10 fb : tt WW
 - Like sign leptons (with b tags)
- Stop: tt ZZ, tt bb W W
- Possible Chargino/Neutralino signal
 - Chargino: stop1 b, N1 W*
- Possible displaced vertex (depends on susy breaking)

Spectrum 2: Stop NLSP but not stealthy

H_1	125 GeV	C_1	$628~{ m GeV}$
$ ilde{t}_1$	$210~{ m GeV}$	N_2	$651~{ m GeV}$
N_1	429 GeV	H_3	667 GeV
\tilde{b}_1	501 GeV	N_3	$700~{\rm GeV}$
A_1	572 GeV	A_2	720 GeV
$ ilde{t}_2$	$621~{\rm GeV}$	N_4	724 GeV
H^{\pm}	626 GeV	N_5	$806~\mathrm{GeV}$
H_2	627 GeV	C_2	881 GeV


Light fields are heavier Stop, Neutralino, stop/bottom; new N1 decay modes

Phenomenology of Heavier Stop NLSP

$$\tilde{t}_{1} \rightarrow t + LSP \quad 100\%
N_{1} \rightarrow t + \tilde{t}^{*} \quad 50\%
N_{1} \rightarrow \bar{t} + \tilde{t} \quad 50\%
\tilde{b}_{1} \rightarrow \tilde{t}_{1} + W^{-} \quad 100\%
\tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \quad 78\%
\tilde{t}_{2} \rightarrow \tilde{b}_{1} + W^{+} \quad 14\%
\tilde{t}_{2} \rightarrow \tilde{t}_{1} + H_{1} \quad 8\%$$

- Stop has same decay
 - Reduced cross section 8 pb (5% top)
 - Still not much missing energy
- Sbottom as before: tt WW
- Heavier stop as before: ttZZ, others (new)
- N1->tt final state (small missing energy)

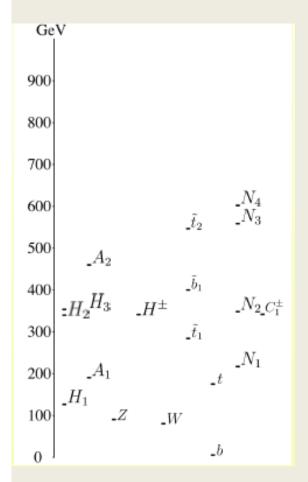
Spectrum 3: Gauge mediation and neutralino LSP

N_1	88 GeV	C_2	$415 \mathrm{GeV}$
H_1	$128 \mathrm{GeV}$	N_4	$434~\mathrm{GeV}$
$ ilde{t}_1$	191 GeV	H_2	$473~\mathrm{GeV}$
N_2	192 GeV	\tilde{t}_2	517 GeV
N_3	291 GeV	N_5	613 GeV
C_1	327 GeV	H^{\pm}	$650~{ m GeV}$
\tilde{b}_1	$350~{ m GeV}$	H_3	657 GeV
A_1	$412~{ m GeV}$	A_2	702 GeV

Standard in some respects
Neutralino NLSP (assuming gauge mediation)
But reduced cross sections
Still light stops, others heavy

Phenomenology

$$\begin{array}{llll} \tilde{t}_1 & \to N_1^+ + b + W^+ & 100\% \\ \tilde{b}_1 & \to N_3 + b & 80\% \\ \tilde{b}_1 & \to \tilde{t}_1 + W^- & 95\% \\ \tilde{b}_1 & \to N_3 + b & 4\% \\ \tilde{b}_1 & \to N_1 + b & 1\% \\ \tilde{t}_2 & \to \tilde{t}_1 + Z & 42\% \\ \tilde{t}_2 & \to \tilde{b}_1 + W^+ & 31\% \\ \tilde{t}_2 & \to N_2 + t & 10\% \\ \tilde{t}_2 & \to C_2^+ + b & 8\% \\ \tilde{t}_2 & \to N_1 + t & 4\% \\ \tilde{t}_2 & \to C_1^+ + b & 3\% \\ \tilde{t}_2 & \to N_3 + t & 2\% \\ \end{array}$$


- N1->γ + gravitino (missing energy)
- Stop->t*+ N1
- Stop2->Stop+Z,sbottom +W, N+t,

C+b, jet+missing energy (t) (W)

Gauge mediation-like and reduced rates

Extra tops and Ws

Spectrum 4: Neutralino (N)LSP from High Duality Scale

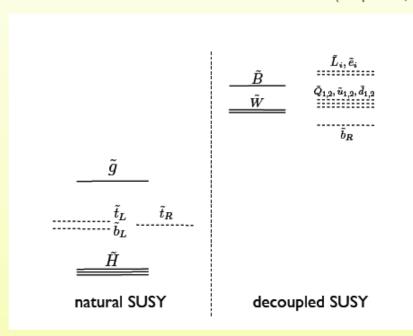
H_1	$126~{\rm GeV}$	N_2	$348~{\rm GeV}$
A_1	$190~{\rm GeV}$	H_3	$353~{\rm GeV}$
N_1	$217~{\rm GeV}$	\tilde{b}_1	$400~{\rm GeV}$
\tilde{t}_1	$284~{\rm GeV}$	A_2	$460~{\rm GeV}$
H_2	$339~{\rm GeV}$	\tilde{t}_2	546 GeV
H^{\pm}	$341~{\rm GeV}$	N_3	$559~{ m GeV}$
C_1	$341~{\rm GeV}$	N_4	$602~{\rm GeV}$

Contributions to composite soft masses from radiative corrections,

Not from higher-dimension operators
Higgs likely to be naturally lighter since soft mass
terms smaller

Phenomenology of Spectrum 4

$$\begin{array}{lll} \text{t1->N1+b+W*} \\ \tilde{b}_1 & \to \tilde{t}_1 + W^- & 100\% \\ \tilde{t}_2 & \to \tilde{t}_1 + Z & 28\% \\ \tilde{t}_2 & \to C_1^+ + b & 24\% \\ \tilde{t}_2 & \to \tilde{b}_1 + W^+ & 20\% \\ \tilde{t}_2 & \to N_2 + t & 15\% \\ \tilde{t}_2 & \to N_2 + t & 14\% \\ \end{array}$$


- stop->N+t* (N b W*) (4 body decay first kinematically allowed)
- Stop2->stop1+z, C+b, sbottom+W, N+t
- Sbottom->stop1+W
- Like standard SUSY in some respects at reduced rates

Conclusion

- Does supersymmetry explain hierarchy?
- Looks like more elaborate version called for involving two scales
- Searches possibly dominated by light stops, sbottoms
 - Here a rather natural model
 - Other suggestions in literature
- Important to investigate
 - Range of models
 - Range of experimental signatures
 - Note most such models have heavy gluinos so recent ATLAS mostly relevant for sbottom bound
 - But much more to come

The bounds on natural SUSY: naturalness

(Papucci, Ruderman, Weiler '11)

Below TeV scale

Above TeV scale

Gluino and Winos not as clear-cut: gluino could be heavier, while wino definitely below TeV...

Resulting Potential

$$W \supset yP(\mathcal{H}\bar{\mathcal{H}} - \mathcal{F}^2) + yS(H_uH_d - f^2) + yQ_3H_u\bar{t} + y\mathcal{H}EX$$

$$V = y^{2}|H_{u}H_{d} - f^{2}|^{2} + y^{2}|S|^{2}(|H_{u}|^{2} + |H_{d}|^{2}) + m_{S}^{2}|S|^{2} + m_{H_{u}}^{2}|H_{u}|^{2} + m_{H_{d}}^{2}|H_{d}|^{2} + (ASH_{u}H_{d} + TS + h.c.) + \frac{g^{2} + g'^{2}}{8}(|H_{u}|^{2} - |H_{d}|^{2})^{2}$$

$$T = \mu_f \Lambda \left(-\frac{16\pi^2 m_\lambda}{bg^2} - \frac{2(2F - 3N)}{3N - F} B \right)$$

$$T \sim \mu_f \Lambda imes m_{UV}$$
 ~f^2 mUV

Because mufvchosen to give EW symmetry breaking and gaugino mass (muv) is of same size,

T has roughly EW scale in the end

Phases of Seiberg Duality

5.3. Duality

The physics of the interacting fixed point obtained for the range $\frac{3}{2}N_c < N_f <$ $3N_c$ has an equivalent, "magnetic," description [8]. It is based on the gauge group $SU(N_f - N_c)$, with N_f flavors of quarks q_i and \tilde{q}^i and gauge invariant fields $M_{\tilde{i}}^i$ with a superpotential

$$W = \frac{1}{\mu} M_{\tilde{j}}^{i} q_{i} \tilde{q}^{\tilde{j}}. \tag{5.5}$$

The magnetic theory has a scale $\widetilde{\Lambda}$ which is related to the scale Λ of the electric theory by

$$\Lambda^{3N_c - N_f} \widetilde{\Lambda}^{3(N_f - N_c) - N_f} = (-1)^{N_f - N_c} \mu^{N_f}, \tag{5.6}$$

$$N_c + 2 \le N_f \le \frac{3}{2}N_c$$
 non-Abelian free magnetic

$$SU(N_f - N_c)$$
 gauge fields

We are at border; free magnetic phase but calculable using electric-magnetic duality

Embedding

$$q = Q_3, \mathcal{H}, H_d$$

 $\bar{q} = X, \bar{\mathcal{H}}, H_u$

Third generation quark doublet, Higgses, and bifundamentals (that combine SU(2)xU(1)s)

$$M = \begin{pmatrix} V & U & \bar{t} \\ E & G + P & \phi_u \\ R & \phi_d & S \end{pmatrix}$$

V is 3 QCD antitriplets U is a (3,2) E is 3 doublets G is SU(2) triplet Φ u and Φ d are doublets P and S are singlets, and R yields 3 singlets

Net Content

 Anomaly cancellation and invariance of superpotential determines hypercharge assignment

$$\pm \operatorname{diag}(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, 0, 0, -\frac{1}{2}) \text{ for } q, \bar{q}$$

													G, P, S
Y	$\frac{1}{6}$	0	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{6}$	0	$-\frac{1}{6}$	$-\frac{2}{3}$	$\frac{1}{6}$	$-\frac{1}{2}$	$\frac{2}{3}$	$\frac{1}{2}$	0

P, S only true singlets: more on that later Need elementary gauge symmetries to be anomally free:

V', U', Pu', R', Pd' → yield masses with conjugate fields (through dim 3 ops in electric superpotential)

X, E, P, S at low energy: X a singlet P a doublet -> W/remaining SM fermions anomaly free Yukawa term eliminates E and X from spectrum

Superpotential

$$W \supset yP(\mathcal{H}\bar{\mathcal{H}} - \mathcal{F}^2) + yS(H_uH_d - f^2) + yQ_3H_u\bar{t} + y\mathcal{H}EX$$

- This is still supersymmetric limit
 - Yukawas from duality
 - Note relation mu term and top mass
 - Tadpoles from assumed mass terms in electric theory
 - Note P, S only singlets so only such terms allowed
- Breaks two SU(2)s to single one
- Gives Higgs VEV
- Full answer depends on supersymmetry breaking

Supersymmetry Breaking

- When supersymmetry breaks and communicated above compositeness scale, need to derive SUSY masses from initial electric theory
- Use analytic continuation into superspace
- Note superpotential is Yukawa term and any term that matches from electric theory
- Plus these supersymmetry breaking terms

Derivation of m²_{IR}

 Use real and chiral spurions Z and U with nonzero theta

$$Z = 1 - \theta^2 B - \bar{\theta}^2 B - \theta^2 \bar{\theta}^2 (m_{UV}^2 - |B|^2)$$

$$U = \frac{1}{2g^2} - i \frac{\theta_{YM}}{16\pi^2} + \theta^2 \frac{m_{\lambda}}{g^2} ,$$

$$\Lambda_h = \mu e^{-16\pi^2 U(\mu)/b}$$
 $b = 3N - F$ $N = 4 \text{ and } F = 6$

$$\mathcal{L} = \int d^4\theta \left(\mathcal{Q}^{\dagger} Z e^V \mathcal{Q} + \bar{\mathcal{Q}}^{\dagger} Z e^V \bar{\mathcal{Q}} \right) + \int d^2\theta \left(U W^{\alpha} W_{\alpha} + \mu_f \bar{\mathcal{Q}} \mathcal{Q} \right) + h.c.$$

We now incorporate an anomalous U(1)
Z and U are spurions of the U(1) as well
Let us match dependence in electric and magnetic theories

More on derivation

U(1):
$$Q \to e^A Q$$
, $\bar{Q} \to e^A \bar{Q}$
 $Z \to e^{-A-A^{\dagger}}$, $\Lambda_h \to e^{2F/bA} \Lambda_h$

Define invariant that can be used to compensate dimensions:

$$\Lambda^2 = \Lambda_h^\dagger Z^{2F/b} \Lambda_h$$

Also a spurion
$$\log\frac{\Lambda}{\mu}=\frac{-8\pi^2}{bg^2}+\frac{-8\pi^2m_\lambda}{bg^2}(\theta^2+\bar{\theta}^2)-\frac{F}{b}m_{UV}^2\theta^2\bar{\theta}^2$$

$$\mathcal{L} = \int d^4\theta \left[\frac{M^{\dagger}Z^2M}{\Lambda^2} + \frac{q^{\dagger}Z^{N/(F-N)}e^{\tilde{V}}q}{\Lambda^{(4N-2F)/(F-N)}} + \frac{\bar{q}^{\dagger}Z^{N/(F-N)}e^{\tilde{V}}\bar{q}}{\Lambda^{(4N-2F)/(F-N)}} \right]$$

$$+ \int d^2\theta \left[U\widetilde{W}^{\alpha}\widetilde{W}_{\alpha} + \frac{y\,Mq\bar{q}}{\Lambda_h^{b/(F-N)}} + \mu_f M \right] + h.c.$$

Uses IR perturbativity, SUSY invariance, U(1) invariance, dimensional analysis

Higgs Potential w/SUSY Breaking

•The relevant part of the Higgs potential:

$$V = y^{2}|H_{u}H_{d} - f^{2}|^{2} + y^{2}|S|^{2}(|H_{u}|^{2} + |H_{d}|^{2}) + m_{S}^{2}|S|^{2} + m_{H_{u}}^{2}|H_{u}|^{2} + m_{H_{d}}^{2}|H_{d}|^{2} + (ASH_{u}H_{d} + TS + h.c.) + \frac{g^{2} + g'^{2}}{8}(|H_{u}|^{2} - |H_{d}|^{2})^{2}$$

- Usual quartic
- BUT additional NMSSM like piece
 - With big coupling
 - Related to top Yukawa
- Not MSSM potential though
 - $-\tan\beta$ can be about unity
 - And probably is
 - EW symmetry broken in SUSY limit
 - f determines SUSY breaking
 - Higgs mass not related to Z mass
 - But f is input parameter

Higgs Sector

Usual:
But tan beta~1

$$\langle H_u^0 \rangle = \frac{v}{\sqrt{2}} \sin \beta \ , \qquad \langle H_d^0 \rangle = \frac{v}{\sqrt{2}} \cos \beta$$

Determines mu parameter (with top Yukawa)
But not so relevant to vacuum

$$\langle S \rangle = -\frac{\sqrt{2} \left(\mathbf{A} v^2 \sin \beta \cos \beta + 2T \right)}{2 M_S^2 + y^2 v^2}$$

$$\frac{y^2 v^2}{2} = \frac{2 (y^2 f^2 - AS)}{\sin 2\beta} - 2 y^2 S^2 - m_{H_u}^2 - m_{H_d}^2$$

Very little tuning

$$\frac{y^2v^2}{2m_{H_u}^2}$$

Gluino mass not so constrained by Higgs mass

$$\Delta m_{\tilde{t}} \sim \frac{32}{3} \frac{\alpha_s}{4\pi} |M_3|^2 \log \left(\frac{\Lambda}{\text{TeV}}\right)$$

More in our model to keep stop light (1.5 TeV still very natural)

Particle Content

- With relatively small flavor group, only one generation (and only quarks at that) participate in duality
 - Quarks and antiquarks transforming under SU(2)
 - $-SU(3)_{c}$ is part of the global symmetry
 - There are also electric SU(2) and U(1) embedded in SU(6) to make model partially composite

Soft Masses Vanish when 3N=2F

$$m_M^2 = 2 \frac{3N - 2F}{b} m_{UV}^2 \; , \qquad m_q^2 = - \frac{3N - 2F}{b} m_{UV}^2 \; . \label{eq:mM}$$

Generally bad Some masses tachyonic Except special case 3N=2F At edge of conformal window Leading order soft masses vanish there

Also:

$$m_{\tilde{\lambda}} = -\frac{3N - 2F}{3N - F} m_{\lambda}$$

Also soft mass:
To get the soft terms that come from the superpotential couplings we must rescale the fields to get canonical Kähler terms. Since we need terms only of order θ^2 we can write

$$Z = \xi^{\dagger} \xi , \qquad \xi = 1 - \theta^2 B \tag{2.18}$$

and then rescale chiral fields only via the holomorphic quantities ξ, Λ_h . We then find the superpotential terms in the canonical basis:

$$\int d^2\theta \left(y M q \bar{q} + \mu_f \Lambda_h M \xi^{\frac{2(2F-3N)}{(3N-F)}} + h.c. \right)$$
(2.19)

Since the cubic superpotential is independent of the supersymmetry breaking spurions, we find that the A-term vanishes in the IR limit for any F:

Soft Masses

- Strong dynamics are close to conformal
 - Guarantees masses of composite superpartners vanish at leading order
 - Assumes soft susy breaking generated above confinement scale
 - Elementary fields, gluino have big susy breaking masses

$$m_{el} \sim M_3 \sim \text{few} \cdot \text{TeV}$$

Composite fields have small masses

$$m_{comp} \sim \frac{m_{el}^2}{\Lambda} \sim M_1 \sim M_2 \sim A \sim \text{few} \cdot 100 \text{ GeV}$$