The Search for the Brout-Englert-Higgs Boson

# New Results from the DØ Experiment

Joseph Haley Northeastern University

On Behalf of the DØ Collaboration

Rencontres de Moriond 7 March 2012, La Thuile, Italy





#### **Standard Model**

- How can we break the EW symmetry?
- ⇒ The Brout-Englert-Higgs mechanism
- F. Englert and R. Brout, Phys. Rev. Lett. 13, 321 (1964).
  P. Higgs, Phys. Rev. Lett. 13, 508 (1964).
  G. Guralnik, C.R. Hagen, T.W.B. Kibble, Phys. Rev. Lett. 13, 585 (1964).
- > Introduce complex doublet field
- > With a "wine bottle" potential
- > Expand around the ground state
  - $\Rightarrow$  Three degrees of freedom give mass to the W<sup>+</sup>, W<sup>-</sup>, and Z bosons
    - $\Rightarrow$  One massive scalar boson (the "Higgs" boson)
    - ⇒ Fermions obtain mass via coupling to BEH field
- > We need to find this massive scalar boson to confirm the theory



#### **DØ** Collaboration



### Tevatron



#### Tevatron

#### pp collider with $\sqrt{s} = 1.96$ TeV

- Shutdown September 30, 2011 after 26 years of outstanding operation
- > First superconducting accelerator
- Delivered ~11.9 fb<sup>-1</sup>
- Recorded ~10.7 fb<sup>-1</sup>
- Good Data Quality ~9.7 fb<sup>-1</sup>



# Search Strategy

#### Cross section (pb) 10 gg→H WH Excluded by ZH **Branching** ratio ww bb 0.1 ZZ ττ gg CC LEP 10-2 chuded by Zγ γγ 10-3 180 100 120 140 160 200 $m_{H}$ (GeV/c<sup>2</sup>) 6

#### No single channel has enough sensitivity ⇒ Divide and conquer

- Explore as many final states as possible
- Maximize acceptance
- Separate into sub-channels
  - Different signal purity
  - Different background composition
- Use multivariate techniques
  - Reduce/remove backgrounds
  - Best discrimination for measurement
- Put it all back together
- Account for correlations between channels
- Perform statistical tests to see if the data are compatible with SM Higgs signal

# Search Strategy

#### Cross section (pb) 10 gg→H WH Excluded by ZH **Branching** ratio bb 0.1 ZZ ττ gg CC LEP 10-2 huded by Zγ γγ 10-3 180 100 120 140 160 200 $m_{H}$ (GeV/c<sup>2</sup>)

#### No single channel has enough sensitivity ⇒ Divide and conquer

- Explore as many final states as possible
- Maximize acceptance
- Separate into sub-channels
  - Different signal purity
  - Different background composition
- Use multivariate techniques
  - Reduce/remove backgrounds
  - Best discrimination for measurement
- Put it all back together
- Account for correlations between channels
- Perform statistical tests to see if the data are compatible with SM Higgs signal

#### $H \rightarrow WW \rightarrow |v|v$



10<sup>2</sup>

10 

10<sup>-1</sup>

0

- Lepton flavor
- > Jet multiplicity



#### $H \rightarrow WW \rightarrow |v|v$

Discriminating against dominant  $Z/\gamma^*$ 

- >  $Z/\gamma^*$  events have little  $\not E_T$
- eµ uses transverse mass variables
  - Removes 60–90% of background
  - Retains 80–90% of signal
- > ee and  $\mu\mu$  use multivariate discriminate based on  $\not\!\!\!E_T$ 
  - Removes 95–99.9% of background
  - Retains 55–80% of signal



#### $H \rightarrow WW \rightarrow IvIv$

# Final discriminants from multivariate classifiers

- For each sub-channel
- Capitalize on correlations
  - Kinematic differences
  - Spin correlations





#### Combined Limits for $H \rightarrow WW$

Combining all  $H \rightarrow WW$  channels:



- > ~20% more data than previous result  $\Rightarrow$  9% improvement in sensitivity
- > Additional 5% improvement at lower masses

Improved background modeling, increased acceptance, optimization of discriminants

Still room for improving lepton ID and adding more final states











# b-tagging

Jet

# Enhance H → bb by requiring jets to be "b-tagged" 50 - 80% efficiency to tag b-jet 0.5 - 10% chance to tag light jet



### **b-tagging In Action**



## **b-tagging In Action**



#### **Improvements Since Summer**

~12% more data  $\Rightarrow$  ~6% improvement

Increased lepton efficiency / acceptance

- WH  $\rightarrow$  lvbb: new multivariate electron identification  $\Rightarrow \sim 5\%$  improvement
- WH  $\rightarrow$  lvbb: increased muon acceptance  $\Rightarrow$  5-10% (in progress)
- FSR and semi-leptonic jet corrections  $\Rightarrow \sim 1\%$

Improved multivariate discrimination

• 2–10% depending on analysis (room for more in the future)

More optimized b-tag categories

- ZH  $\rightarrow v\bar{v}b\bar{b}$ : b-tag outputs sum to define b-tag bins  $\Rightarrow \sim 15\%$
- WH → lvbb: three b-tag channels ⇒ ~5%
   (Future improvements with c-jet discrimination)

#### Individual Limits for $H \rightarrow bb$



#### Combined Limits with $H \rightarrow bb$

#### Combining all $H \rightarrow b\overline{b}$ channels:



Limits for  $m_{\rm H} = 115 \text{ GeV}$ 

- > Observed: 1.79  $\times \sigma_{_{SM}}$
- > Expected: 1.71 ×  $\sigma_{SM}$
- ~16% improvement from summer result

#### Many More Analyses

#### • Full combination includes many more analyses



> Less sensitive, but every bit of sensitivity adds up



#### Conclusion



Excess at the level of 1–2 standard deviations in the mass range 115–145 GeV More improvements to come

#### Thank you



- For additional details see
  - > Tevatron: http://tevnphwg.fnal.gov/results/SM\_Higgs\_Winter\_12/
  - CDF: http://www-cdf.fnal.gov/physics/new/hdg/Results.html
  - > D0: http://www-d0.fnal.gov/Run2Physics/WWW/results/higgs.html
- Thanks to everyone at DØ who contributed to this update!
- Bigger thanks to everyone who designed, built, or operated DØ!
- FNAL Computing Division: Thanks for all the computing power and software!
- FNAL Beams Division: Thanks for all the collisions!
- Photographs of Fermilab and its wildlife were taken by Reidar Hahn, FNAL VMS



#### **Background p-Value**



#### **Higgs Cross Section Fit**



#### Log Likelihood Ratio



#### **Cross Section Limits**



#### **Cross Section Limits**



#### LLR for $H \rightarrow WW$ Only



# LLR for $H \rightarrow b\overline{b}$ Only

![](_page_32_Figure_1.jpeg)

# 1 - CL<sub>s</sub>

![](_page_33_Figure_1.jpeg)

![](_page_34_Picture_0.jpeg)

![](_page_34_Figure_1.jpeg)

## b-tagging

#### Enhance $H \rightarrow bb$ by requiring jets to be "b-tagged"

![](_page_35_Figure_2.jpeg)

### DØ Detector

![](_page_36_Figure_1.jpeg)

- Central Tracking System
  - Silicon Micro-strip Tracker
  - Central Fiber Tracker
  - 2 T Solenoid Magnet
- Calorimeters
  - Central Calorimeter (CC)
  - End Calorimeters (EC)
- Muon System
  - 3 sets of detectors
  - Scintillating tiles
  - Gas Drift Tubes

antiprox - 1.8 T Toroid Magnets