Jan Heisig (Hamburg University)

Moriond EW sessions 2012 March 6, 2012

The search for SUSY: Search for certain DM scenario. Different possibilities for electrically+color neutral LSP:

neutralino I SP MSSM:

sneutrino LSP

gravitino LSP Ext.: axino LSP...

The search for SUSY: Search for certain DM scenario. Different possibilities for electrically+color neutral LSP:

neutralino LSP MSSM:

sneutrino LSP

gravitino LSP Ext.:

axino LSP...

The search for SUSY: Search for certain DM scenario. Different possibilities for electrically+color neutral LSP:

```
most widely studied
               neutralino LSP sneutrino LSP
                                          missing energy and hard SM radiation
MSSM:
               gravitino LSP
                                          LSP not involved inside detector NLSP determines collider signature
■ Fxt ·
               axino LSP
```

Big difference: NLSP neutral or charged

The search for SUSY: Search for certain DM scenario. Different possibilities for electrically+color neutral LSP:

```
most widely studied
             neutralino LSP
                                      missing energy and hard SM radiation
MSSM:
             sneutrino LSP
              gravitino LSP
                                      LSP not involved inside detector NLSP determines collider signature
■ Fxt ·
              axino LSP
```

Big difference: NLSP neutral or charged similar to neutralino I SP totally different SUSY search

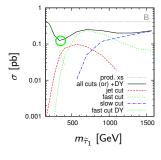
---> Phenomenology of long-lived stau scenario

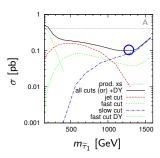
Signal at colliders

- Charged tracks, high p_T , tracker+muon-chambers (muon-like)
- Muons always ultrarelativistic \leftrightarrow stau can travel slower than c
 - → Main discrimination: velocity
- If staus originate from cascades: further signatures from SM particle radiation

Simplified model

As model-independent as possible \rightarrow Simplified model approach

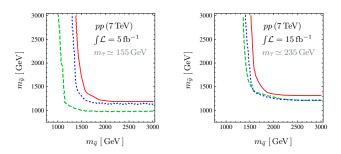

- Focus on strong production
- Consider $m_{\widetilde{\sigma}}$, common $m_{\widetilde{\alpha}}$ and $m_{\widetilde{\tau}_1}$


Can one set conservative bounds on these parameters from the LHC experiment, that cover all possible spectra?

How large is the dependence on the spectra?

Cascades

- Systematically explore parameter space
- Impose appropriate selection criteria \rightarrow high efficiencies



■ Two potential regions to hide scenario

Gluino-squark-plane

Projected LHC sensitivity for the main region and the two limiting cases (very fast staus, very slow staus):

Curves lie within a relatively thin band

- Charged long-lived sparticles provide very promising signatures at the LHC
- Model-independent bounds on $m_{\widetilde{g}}, m_{\widetilde{q}}, m_{\widetilde{\tau}_1}$ achievable

Conclusion

- Charged long-lived sparticles provide very promising signatures at the LHC
- Model-independent bounds on $m_{\widetilde{g}}, m_{\widetilde{g}}, m_{\widetilde{\tau}_1}$ achievable
- Further details:
 - J. Kersten, JH, "Long-lived staus from strong production in a simplified model approach" arXiv:1203.1581 [hep-ph]

- Charged long-lived sparticles provide very promising signatures at the LHC
- Model-independent bounds on $m_{\widetilde{g}}, m_{\widetilde{g}}, m_{\widetilde{\tau}_1}$ achievable
- Further details:
 - J. Kersten, JH, "Long-lived staus from strong production in a simplified model approach" arXiv:1203.1581 [hep-ph]
- Thank you for your attention!