Seeking the Brout-Englert-Higgs Boson

New Results from Tevatron Experiments

Wade Fisher Michigan State University

On Behalf of the CDF and DØ Collaborations

Rencontres de Moriond 7 March 2012, La Thuile, Italy

Overview of Tevatron BEH Production

Overview of Tevatron BEH Production

- Tevatron searches are characterized by two regions characterized by two distinct Higgs decays
 - For M_{μ} <135 GeV, H \rightarrow bb dominates
 - For M_{μ} >135 GeV, H \rightarrow WW dominates

Summary of the Tevatron BEH Program

4

Summary of the Tevatron BEH Program

BEH Search Validation

- Tevatron experiments devote significant efforts to validate search techniques using known processes with similar signatures
 - For W/Z+H \rightarrow bb searches: Study W/Z+Z \rightarrow bb
 - For $H \rightarrow WW \rightarrow I \lor I \lor$ searches: Study SM $WW \rightarrow I \lor I \lor$

CDF & DØ Individual Results

- Shown in the earlier talks from today
 - Similar search sensitivity over entire probed mass region
 - DØ: Exclude 159 < M₁ < 166 GeV
 - CDF: Exclude $147 < M_{\mu} < 175 \text{ GeV}$

CDF & DØ Individual Results

- Visualizing O(100) input distributions can be simplified by reordering bins by signal and background content
 - High s/b region is where we would expect to find an excess

Tevatron Run II Preliminary, $L \le 10 \text{ fb}^{-1}$

Visualizing O(100) input distributions can CEMCMUP TRKPHX HobitTHobitT CDF Run II Preliminary (9.4fb⁻¹) be simplified by reordering bins by signal Number of events 10³ and background content 77 High s/b region is where we would W7 ww Single top (t-ch) Single top (s-ch) expect to find an excess NonW QCD WH (115 GeV) x 10 ZH (115 GeV) x 100 Tevatron Run II Preliminary, $L \le 10$ fb⁻¹ Events 10 **10**⁶ **Tevatron Data** $m_{\rm H}=115 \text{ GeV/c}^2$ Background 556 Data Events $_{\rm BNN}^{0.6}$ output ($M_{\rm H}^{0.8}$ = 115 GeV/c²) 0.5 Signal 10 ⁴ $ZH \rightarrow v\overline{v}b\overline{b}$ Analysis sample (two b-tags) Events / 0.12 002 008 008 008 800 MJDT > 0.0D0 Preliminary (8.4 fb 10 ³ Тор V+h.f.+VV 10² V+I.f. Multijet VH × 10 10 400 1 300 -1 M_{..} = 115 GeV 200 10 100 -2 10 0 -0.8 -0.6 -0.4 0.4 -3 -0.2 0.6 10 **Final Discriminant** -3 -2 -1 0 $\log_{10}(s/b)$

95% C.L. upper limits on SM Higgs boson production at the Tevatron

Expected exclusion: $100 < M_{\mu} < 120 \text{ GeV}$ $141 < M_{\mu} < 184 \text{ GeV}$

- 95% C.L. upper limits on SM Higgs boson production at the Tevatron
 - Expected exclusion: $100 < M_{\mu} < 120 \text{ GeV}$
 - Observed exclusion:

147 < M_H < 179 GeV

141 < M_{_} < 184 GeV

95% C.L. upper limits on SM Higgs boson production at the Tevatron

- Expected exclusion: $100 < M_{_{I}} < 120 \text{ GeV}$ $141 < M_{_{H}} < 184 \text{ GeV}$
- Observed exclusion: $100 < M_{u} < 106 \text{ GeV}$ $147 < M_{u} < 179 \text{ GeV}$

• Two different tests of the data, comparing to S+B and B-only predictions

- Left: Local p-value distribution for background-only expectation.
 - Minimum local p-value: 2.7 standard deviations
 - Global p-value with LEE factor of 4: 2.2 standard deviations
- **<u>Right:</u>** Maximum likelihood fit to data with signal as free parameter.

 $\Delta\chi^2$ test with fixed signal prediction from SM theory agrees well with freely floating signal rate estimation

- $\Delta \chi^2$ minimum in the region 115 < M_H < 135 GeV
- Region above $M_{_{
 m H}}$ =150 never falls below $\Delta\chi^2$ = -6

• Considering separately the $H \rightarrow bb$ and $H \rightarrow WW$ channels

- Local p-value distribution for background-only expectation.
 - Minimum H \rightarrow bb local p-value: 2.8 standard deviations
 - Global H \rightarrow bb p-value with LEE factor of 2: **2.6 standard deviations**

- Revisit s/b rebinned distribution plot for M_{μ} =125 GeV
 - Cumulative distribution seems to prefer S+B model
 - Background-subtracted plot illustrates several interesting candidate events

Tevatron Run II Preliminary, $L \le 10 \text{ fb}^{-1}$

э́ ш100

-100

-200

-300

-400

0

Overlaying a BEH Signal

Log-Likelihood Distributions

 The log-likelihood ratio helps to gauge the relative agreement of the data with the background or signal+background models

Real Data Analysis

<u> 3σ Signal Injection Study</u>

- An obvious question: does the global signature you observe make sense for a SM Higgs signal?
 - Consider a study performed by injecting M_{H} =125 GeV Higgs signal to our search, luminosity scaled so the excess is 3 s.d. above the background prediction.
 - Expect broad excess over entire mass range. +1 standard deviation at M_{H} =200 GeV

Log-Likelihood Distributions

Conclusions

For additional details see

- Tevatron: http://tevnphwg.fnal.gov/results/SM_Higgs_Winter_12/
- CDF: http://www-cdf.fnal.gov/physics/new/hdg/Results.html
- DO: http://www-d0.fnal.gov/Run2Physics/WWW/results/higgs.html
- X Tevatron program now analyzing full data set in most analyses
- More search improvements to come in the near future
- The data appear to be incompatible with the background, with a global p-value of 2.2 s.d. (2.7 local)
 - **x** H \rightarrow bb only: 2.6 s.d. (2.8 local)
- Higgs mass range of 115 < M_H < 135 continues to be very interesting

Tevatron Run II Preliminary, $L \le 10 \text{ fb}^{-1}$

Thank you for your attention

Questions?

Log-Likelihood Distributions

BEH Search Validation

29

BEH Search Validation

Theory Considerations for BEH Production

- General treatment
 - Consider uncertainty on Higgs branching fractions, correlated effect between H->bb and H->WW channels.
 - Associated production, vector boson fusion production uncertainties from
- Treatment for the $gg \rightarrow H$ process
 - Cross-section: NNLO with soft resummation to NNLL (& EW corrections)
 - D. de Florian and M. Grazzini, arXiv:0901.2427 (hep-ph)
 - C. Anastasiou, R. Boughezal and F. Petriello, arXiv:0811.3458 (hep-ph)
 - Use MSTW08 PDF set as recommended by PDF4LHC
 - Channels that don't split by number of jets
 - PDF+ α_s : Use PDF4LHC prescription
 - Scale: Vary factorisation + renormalization uncertainty by factor of 2 together
 - PDF+ α_{s} and scale treated as uncorrelated

Theory Considerations for BEH Production

- Treatment for the gg \rightarrow H process
 - Channels that split by number of jets
 - Different PDF+ α_s and scale errors for each bin as before but
 - Treat scale uncertainty of NNLO+NNLL inclusive, NLO-1-or-more & NLO-2-ormore-jets as uncorrelated a la BNL
 - Berger et al., arXiv:1012.4480 (hep-ph)
 - Stewart and Tackmann, arXiv:1107.2217 (hep-ph)
 - From these calculate exclusive H+0jet, H+1jet, H+2jet-or-more scale uncertainties

Jet bin	s0	s1	s2
0 jet	13.4%	-23.0%	0
1 jet	0	35%	-12.7%
>= 2 jets	0	0	33%

• PDF errors from Anastasiou et al., JHEP 0908, 099 (2009) as before

Further details on combinations: http://tevnphwg.fnal.gov

