An effective coupling approach to neutralino dark matter relic density at one loop

Manuel Drees1, Arindam Chatterjee1, Fawzi Boudjema2, Guillaume Drieu la Rochelle2, Suchita Kulkarni1,3

1BCTP Bonn, University of Bonn
2LAPTh, Annecy
3LPSC, Grenoble

Based on Phys.Rev.D84:116001,2011, work in progress
Motivation

- CDM scenario $\Rightarrow \Omega h^2 \propto \frac{1}{\sigma}$
- Loop corrections to σ will change relic density at one loop level
- **Aim:** To improve the relic density calculations by improving annihilation cross-section of neutralino
- **This work:** Including electroweak corrections to neutralino annihilation cross-section in effective coupling formalism and assessing the validity
- **Advantage:** Requires computing a few hundred loop diagrams as opposed to few thousands for full one loop
Who is this Neutralino?

After $SU(2)_L \times U(1)_Y \rightarrow U(1)_{\text{EM}}$:

\[\tilde{W}^\pm, \tilde{H}^\pm \xrightarrow{\text{MIX}} \chi_{i=1,2}^{\pm} \quad \text{Charginos} \]

\[\tilde{B}^0, \tilde{W}^0, \tilde{h}^0, \tilde{H}^0 \xrightarrow{\text{MIX}} \chi_{i=1,2,3,4}^0 \quad \text{Neutralinos} \]

Neutralino mass matrix

\[
M_D^0 = N^* M N^\dagger
\]

Neutralino mass matrix

\[
M = \begin{pmatrix}
M_1 & 0 & -M_Z c_\beta & M_Z s_\beta \\
0 & M_2 & M_Z c_\beta & 0 \\
-M_Z c_\beta & M_Z c_\beta & 0 & -\mu \\
M_Z s_\beta & -M_Z s_\beta & -\mu & 0 \\
\end{pmatrix}
\]

\[
\tilde{\chi}_0^1 = N_{11} \tilde{B}^0 + N_{12} \tilde{W}^0 + N_{13} \tilde{h}^0 + N_{14} \tilde{H}^0
\]
Effective couplings

Set of flavor independent (universal) corrections to the cross-section and are similar to oblique corrections in the Standard Model

Exploit the non-decoupling behavior of SUSY particles

Non-decoupling behavior: \(m_f < Q < m_{\tilde{f}} \)

\[
\frac{\tilde{g}(Q)}{g(Q)} - 1 = \frac{g(m_{\tilde{f}})}{g(Q)} - 1 = \beta \log \frac{m_{\tilde{f}}}{Q}
\]

Effective couplings \(^1\)

\[
\Delta N_{\alpha 1} \equiv N_{\alpha 1} \left(\frac{\delta g}{g} + \frac{\delta Z_R^\alpha}{2} + \frac{\delta t_W}{t_W} \right) + \sum_{\beta \neq \alpha} N_{\beta 1} Z_{R}^{\beta \alpha}
\]

\[
\Delta N_{\alpha 2} \equiv N_{\alpha 2} \left(\frac{\delta g}{g} + \frac{\delta Z_R^\alpha}{2} \right) + \sum_{\beta \neq \alpha} N_{\beta 2} Z_{R}^{\beta \alpha}
\]

\(^1\) The above expressions are finite only for matter sector (s)particles in loops

Guasch et. al. JHEP 0210 (2002) 040
Benchmark point

- Electroweak scale input

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>90</td>
<td>Mu_2</td>
<td>800</td>
</tr>
<tr>
<td>M_2</td>
<td>200</td>
<td>Mu_3</td>
<td>800</td>
</tr>
<tr>
<td>M_3</td>
<td>800</td>
<td>Md_2</td>
<td>800</td>
</tr>
<tr>
<td>Ml_2</td>
<td>250</td>
<td>Md_3</td>
<td>800</td>
</tr>
<tr>
<td>Ml_3</td>
<td>250</td>
<td>A_f</td>
<td>0</td>
</tr>
<tr>
<td>Mr_2</td>
<td>110</td>
<td>MH_3</td>
<td>500</td>
</tr>
<tr>
<td>Mq_2</td>
<td>800</td>
<td>$\tan \beta$</td>
<td>5</td>
</tr>
<tr>
<td>μ</td>
<td>-600</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results

\[\downarrow \Delta N_{11} \Rightarrow \uparrow \sigma \Rightarrow \downarrow \Omega \]

- **Annihilation channels**

 \[Z h : \ M_1 \approx 106 \text{GeV} \]
 \[W^+ W^- : \ M_1 \approx 84 \text{GeV} \]
 \[Z Z : \ M_1 \approx 94 \text{GeV} \]

 \[Z \text{ pole} : \ M_1 \approx 47 \text{GeV} \]

 \[\text{Winolike} \ \tilde{\chi}_1^0 : \ M_1 \approx 410 \text{GeV} \]
Toy process $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \mu^+ \mu^-$

Binocase: $M_1 = 90, M_2 = 500, \mu = -600 \text{GeV}$ negligible vertex and box corrections

Higgsinocase: $M_1 = -600, M_2 = 500, \mu = -100 \text{GeV}$ sizable non-universal components
Conclusions

- Effective couplings is a good way to include dominant one loop electroweak corrections
- Neutralino fermion sfermion vertex in this spirit was corrected
- The relic density can change by as much as 4% after implementation
- They work well for binolike neutralino but not so well for winolike neutralino
- Further work for correcting other neutralino annihilation vertices is ongoing
\[
\Delta N_{\alpha 1} \equiv N_{\alpha 1} \left(\frac{\delta g}{g} + \frac{\delta Z_R^\alpha}{2} + \frac{\delta t_W}{t_W} \right) + \sum_{\beta \neq \alpha} N_{\beta 1} Z_{\beta \alpha}^R
\]
\[
\Delta N_{\alpha 2} \equiv N_{\alpha 2} \left(\frac{\delta g}{g} + \frac{\delta Z_R^\alpha}{2} \right) + \sum_{\beta \neq \alpha} N_{\beta 2} Z_{\beta \alpha}^R
\]
\[
\Delta N_{\alpha 3} \equiv N_{\alpha 3} \left(\frac{\delta g}{g} + \frac{\delta Z_R^\alpha}{2} + \frac{1}{2} \frac{\delta M_W^2}{M_W^2} - \frac{\delta \cos \beta}{\cos \beta} \right) + \sum_{\beta \neq \alpha} N_{\beta 3} Z_{\beta \alpha}^R
\]
\[
\Delta N_{\alpha 4} \equiv N_{\alpha 4} \left(\frac{\delta g}{g} + \frac{\delta Z_R^\alpha}{2} + \frac{1}{2} \frac{\delta M_W^2}{M_W^2} - \frac{\delta \sin \beta}{\sin \beta} \right) + \sum_{\beta \neq \alpha} N_{\beta 4} Z_{\beta \alpha}^R
\]
Renormalization scheme

- On-shell renormalization
- Most binolike neutralino and two charginos on shell
- Do not consider renormalization of (s)fermion sector
- $\tan \beta$ from $A^0 Z^0$ transitions
- M_W and M_Z onshell
- Corrections for light quark masses in α taken into account
Corrections to cross-sections

\[\Delta \sigma_{\chi_0 \chi_0 \rightarrow e e} \% \]

\[\Delta \sigma_{\chi_1 \chi_1 \rightarrow e e} \% \]

\[\Delta N_{11} \]

\[\Delta \Omega \% \]

\[M_1 \text{ [GeV]} \]
Non-decoupling behavior

\[\tan \beta = 10, \ M_A = 500, \ M_1 = 100 \]
\[M_2 = 300, \ M_3 = 1200, \mu = 600, \ A = 0 \]
common soft SUSY breaking sfermion masses